-
公开(公告)号:CN111394771B
公开(公告)日:2021-05-04
申请号:CN202010320807.9
申请日:2020-04-22
Applicant: 哈尔滨工业大学
IPC: C25D11/34 , F24S70/225
Abstract: 本发明提供了一种在铜及其合金表面制备涂层的方法及铜制品。所述在铜及其合金表面制备涂层的方法包括:以不锈钢板或不锈钢池为阴极,以铜及其合金为阳极,控制所述复合电解液温度为20‑40℃,在所述阴极和所述阳极两电极间施加600V以上的脉冲电压,在所述铜及其合金表面进行脉冲放电反应,以在所述铜及其合金表面形成具有微凸起结构的陶瓷涂层;其中,所述复合电解液中含醇类,放电环境下,使醇电离,形成气泡,再次促使高频强放电,且气泡的喷发,使涂层受力微膨胀,形成凸起结构。本发明制备的陶瓷涂层致密性高且具有微凸起结构,增加了涂层表面的形状复杂性以及涂层面积。将具有该陶瓷涂层的铜用于太阳能集热领域,具有强的太阳光吸收和光热转换。
-
公开(公告)号:CN112408466A
公开(公告)日:2021-02-26
申请号:CN202011423388.8
申请日:2020-12-08
Applicant: 哈尔滨工业大学
Abstract: 一种高稳定性金属卤化物钙钛矿纳米复合材料的制备方法,本发明属于光电材料技术领域,它要解决金属卤化物钙钛矿CsPbX3纳米晶稳定性不好的问题。制备方法:一、向碱激发溶液中加入活性铝硅酸盐粉体混合,倒入模具中养护,研磨后得到铝硅酸盐聚合物粉末;二、将铝硅酸盐无机聚合物粉末与水混合;三、对铝硅酸盐聚合物粉末高温处理;四、配位溶剂中加入卤化物、表面改性剂OA、OAm以及TOP混合,加热溶解;五、将铝硅酸盐聚合物粉末分散在配位溶剂中,加入卤化物前驱体,加热反应;六、经清洗和干燥。本发明采用原位合成方法,在铝硅酸盐无极聚合物的孔洞结构中原位生长出CsPbX3纳米晶体,提高了CsPbX3的环境稳定性。
-
公开(公告)号:CN106747382B
公开(公告)日:2020-09-08
申请号:CN201710101837.9
申请日:2017-02-24
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/622
Abstract: 本发明提供了一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,属于制备钡长石块体陶瓷方法技术领域。制备无机聚合物:将铝硅酸盐粉体溶解于硅酸盐或铝酸盐水溶液中,注模成型,经固化后获得无机聚合物。配置含Ba2+水溶液,摩尔浓度为0.1~2mol/L。将步骤一制备的无机聚合物浸泡在步骤二制备的含Ba2+水溶液中进行离子置换。将步骤三获得的置换后的无机聚合物干燥,即获得非晶态钡长石前驱体。将步骤四获得的钡长石前驱体进行高温处理,即获得钡长石块体陶瓷。铝硅酸盐聚合物可直接浇筑成型复杂形状构件,经过离子置换和高温处理后可直接获得复杂形状BAS陶瓷;铝硅酸盐聚合物技术将为高效合成兼具复杂形状的BAS陶瓷及其复合材料提供一条新途径。
-
公开(公告)号:CN111591992A
公开(公告)日:2020-08-28
申请号:CN202010523601.6
申请日:2020-06-10
Applicant: 哈尔滨工业大学
IPC: C01B32/921 , C01B32/914 , B82Y30/00 , B82Y40/00
Abstract: 本发明提供了一种单层MXene纳米片及其制备方法,所述制备方法包括:将MAX相粉体分散于氢氟酸溶液中进行刻蚀反应,干燥后得到风琴状的Mxene粉体;将所述Mxene粉体和固态插层剂混合,并置于球磨罐中进行球磨,得到混合粉体;将所述混合粉体离心洗涤,除去所述固态插层剂,干燥后得到单层MXene纳米片。本发明通过采用固态插层剂,直接与风琴状Mxene粉体球磨,利用球磨提供的高能量和剪切力直接进行插层和剥离,一方面,不会对单层Mxene纳米片的结构产生破坏,后续洗涤过程中较容易完全除去;另一方面,固态插层剂可以很好的与风琴状MXene表面丰富的官能团吸附,在没有液相溶剂的参与下,有利于单层MXene材料的分离,提高产率。
-
公开(公告)号:CN111533927A
公开(公告)日:2020-08-14
申请号:CN202010501712.7
申请日:2020-06-04
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种pH和温度双响应的UV交联壳聚糖可注射水凝胶的制备方法,属于生物医用水凝胶领域。本发明首先分别合成pH响应的烯丙基壳聚糖(OAL-CS)和温度响应性的巯基改性聚异丙基丙烯酰胺(HS-PNIPAM),然后基于巯基-烯点击化学能够在UV辐照下可将含有光引发剂的OAL-CS/HS-PNIPAM溶液快速转化为水凝胶;通过调整OAL-CS/HS-PNIPAM质量比,可实现控制水凝胶的pH和温度响应性溶胀大小。本发明不但实现了OAL-CS/HS-PNIPAM溶液在UV辐照下快速形成凝胶,而且赋予UV交联壳聚糖可注射水凝胶的溶胀行为具有pH和温度的智能响应性;由于该水凝胶体系可快速UV固化,可以通过UV固化或UV光刻技术制备用于组织工程、药物释放和创面修复等领域的快速成型的水凝胶。
-
公开(公告)号:CN111455429A
公开(公告)日:2020-07-28
申请号:CN202010320601.6
申请日:2020-04-22
Applicant: 哈尔滨工业大学
IPC: C25D11/26
Abstract: 本发明提供了一种钛表面超疏水复合涂层及其制备方法,所述制备方法包括:对钛试样表面进行预处理;配置适于构建微纳米阵列乳突结构的基础电解液;在所述基础电解液内加入低表面能有机乳液,分散均匀形成微弧诱导/热压场辅助等离子体氧化电解液;将预处理后的钛试样置于所述微弧诱导/热压场辅助等离子体氧化电解液中,以不锈钢板或不锈钢池为阴极、所述预处理后的钛试样为阳极,进行微弧诱导/热压场辅助等离子体氧化,在所述预处理后的钛试样表面形成钛表面超疏水复合涂层。本发明通过一步法在钛表面构建出超疏水“荷叶”形貌,操作过程安全、高效、易操作,且不含任何有毒的有机溶剂或副产品,适于推广。
-
公开(公告)号:CN111394771A
公开(公告)日:2020-07-10
申请号:CN202010320807.9
申请日:2020-04-22
Applicant: 哈尔滨工业大学
IPC: C25D11/34 , F24S70/225
Abstract: 本发明提供了一种在铜及其合金表面制备涂层的方法及铜制品。所述在铜及其合金表面制备涂层的方法包括:以不锈钢板或不锈钢池为阴极,以铜及其合金为阳极,控制所述复合电解液温度为20-40℃,在所述阴极和所述阳极两电极间施加600V以上的脉冲电压,在所述铜及其合金表面进行脉冲放电反应,以在所述铜及其合金表面形成具有微凸起结构的陶瓷涂层;其中,所述复合电解液中含醇类,放电环境下,使醇电离,形成气泡,再次促使高频强放电,且气泡的喷发,使涂层受力微膨胀,形成凸起结构。本发明制备的陶瓷涂层致密性高且具有微凸起结构,增加了涂层表面的形状复杂性以及涂层面积。将具有该陶瓷涂层的铜用于太阳能集热领域,具有强的太阳光吸收和光热转换。
-
公开(公告)号:CN111217610A
公开(公告)日:2020-06-02
申请号:CN201910532639.7
申请日:2019-06-19
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/645
Abstract: 本发明提供了一种纳米晶碳化钽增强硅硼碳氮复相陶瓷材料及其制备方法,上述制备方法包括以下步骤:S1:制备纳米晶碳化钽粉体;S2:按照预设比例将所述纳米晶碳化钽粉体、六方氮化硼、立方硅粉和石墨混合,后高能球磨,得到复合粉体;S3:将复合粉体热压烧结,制得纳米晶碳化钽增强硅硼碳氮复相陶瓷材料。本发明以硅硼碳氮陶瓷为基体,添加碳化钽增强相制备成纳米晶碳化钽增强硅硼碳氮复相陶瓷材料,超高温相碳化钽颗粒以纳米晶的形式均匀分散于非晶的硅硼碳氮基体当中,可起到钉扎裂纹扩展的作用,提高硅硼碳氮陶瓷的力学性能,同时碳化钽的超高温性质对硅硼碳氮陶瓷进行补强,提高复相陶瓷材料的耐高温性能,使其在可在更高的温度下服役。
-
公开(公告)号:CN106810286B
公开(公告)日:2020-03-10
申请号:CN201710039763.0
申请日:2017-01-19
Applicant: 哈尔滨工业大学
IPC: C04B35/80 , C04B35/195 , C04B35/622
Abstract: 一种氮化硼纤维增强堇青石陶瓷基复合材料及其制备方法。以氮化硼纤维作为增强相,以堇青石粉体为原材料,经过混料、成型及烧结即可获得特定型状的陶瓷材料及构件。方法:制备堇青石粉体浆料;氮化硼纤维预处理;将堇青石粉体浆料与氮化硼纤维分散液混合;去除溶剂;装模成型;热压烧结,得到氮化硼纤维增强堇青石陶瓷基复合材料。本发明制备的氮化硼纤维增强堇青石陶瓷基复合材料的抗弯强度为68~176MPa,断裂韧性为2.2~3.7MPa·m1/2,弹性模量为76~143GPa,而且具有优异的介电性能,介电常数ε
-
公开(公告)号:CN106946581B
公开(公告)日:2019-12-10
申请号:CN201710263533.2
申请日:2017-04-20
Applicant: 哈尔滨工业大学
Abstract: 一种使用3D打印技术制备导电石墨烯/无机聚合物复合材料的方法,涉及一种制备导电石墨烯/无机聚合物复合材料的方法。本发明为了解决现有纤维增强陶瓷基复合材料的制备方法不易制成复杂形状构件、制备工艺复杂、成本高、电导率低的问题。本发明:一、制备打印墨水;二、3D打印;三、固化;四、热处理。本发明中使用了具有大尺寸的大片径的氧化石墨烯溶液,并且氧化石墨烯的浓度范围更加宽泛,在打印墨水的制备过程中,本发明中并未添加去离子水来改善墨水的流变性,样品打印成功后,使用塑料培养皿密封来防止水分挥发,这与样品置于完全开放的空间内挥发水分是完全不同的。
-
-
-
-
-
-
-
-
-