-
公开(公告)号:CN116663272A
公开(公告)日:2023-08-29
申请号:CN202310575669.2
申请日:2023-05-22
Applicant: 苏州大学
IPC: G06F30/20 , G01M13/045 , G06F119/14
Abstract: 本发明公开了一种考虑多模式故障激励的深沟球轴承故障动力学建模方法,包括以下步骤:S1:根据深沟球轴承模型,建立了考虑多刚体独立自由度、混合弹流润滑影响和滚珠动态圆周运动要素的三维深沟球轴承动态解析模型;S2:在模型基础上,将保持架兜孔、柔性保持架和刚性保持架模型建立在动态轴承模型中;并分析滚道、滚珠和动不平衡负载常见故障激励源下所建立模型的动态特征;S3:将早期磨损以表面粗糙度变化的形式体现在动力学模型中;S4:建了早期微弱磨损、严重凹坑故障到轴承动态特性的完整逻辑链。本发明,建立了考虑多刚体独立自由度、混合弹流润滑影响和滚珠动态圆周运动等要素的深沟球轴承动态解析模型,具有精细化的优势。
-
公开(公告)号:CN118260631B
公开(公告)日:2025-03-25
申请号:CN202410350184.8
申请日:2024-03-26
Applicant: 苏州大学
IPC: G06F18/24 , G01M13/045 , G06F18/241 , G06F18/2415 , G06F18/10 , G06F18/2131 , G06F18/25 , G06N3/0464 , G06N3/096
Abstract: 本发明提供一种故障轴承中故障类型监测方法和系统,涉及轴承故障诊断技术领域,该方法包括采集各种故障类型的轴承振动信号,并构建故障诊断数据集,将不同阶段的故障任务划分初始任务和增量任务,并确定初始任务和增量任务的故障类别数;构建初始故障诊断模型;基于初始故障诊断模型,对增量任务进行训练,包括模型自适应阶段训练和模型融合阶段训练,通过蒸馏损失将新模型和旧模型进行整合,得到整合后的故障诊断模型;利用整合后的故障诊断模型对待检测的故障轴承振动信号进行故障诊断,得到待检测的故障轴承振动信号的故障类型;与传统的深度学习方法相比,本发明能缓解灾难性遗忘问题,更符合工业应用的实际场景。
-
公开(公告)号:CN116561904A
公开(公告)日:2023-08-08
申请号:CN202310276591.4
申请日:2023-03-21
Applicant: 苏州大学
IPC: G06F30/17 , G06F119/14
Abstract: 本发明公开了一种滚动轴承动力学建模和振动特征分析方法,包括以下步骤:S1:建立健康的轴承动力学模型:分别计算了轴承处于弹流体动压润滑时轴承的刚度和阻尼、滚动体与保持架之间的力以及滚动体与滚道之间的力,确定了健康的轴承动力学模型中所需的基本物理量;S2:建立具有局部故障的轴承动力学模型:通过引入半正弦函数,描述了滚动体经过局部故障时的时变位移激励,最终建立了具有局部故障的轴承动力学模型;S3:识别具有局部故障的动态模型中的主要激振源:通过比较动态模型中基本物理量的数值大小和变化趋势,确定主要激振源。本发明,更为真实地模拟轴承运行过程中的实际工况,为滚动轴承在故障激励下的振动响应分析提供理论基础。
-
公开(公告)号:CN118260631A
公开(公告)日:2024-06-28
申请号:CN202410350184.8
申请日:2024-03-26
Applicant: 苏州大学
IPC: G06F18/24 , G01M13/045 , G06F18/241 , G06F18/2415 , G06F18/10 , G06F18/2131 , G06F18/25 , G06N3/0464 , G06N3/096
Abstract: 本发明提供一种故障轴承中故障类型监测方法和系统,涉及轴承故障诊断技术领域,该方法包括采集各种故障类型的轴承振动信号,并构建故障诊断数据集,将不同阶段的故障任务划分初始任务和增量任务,并确定初始任务和增量任务的故障类别数;构建初始故障诊断模型;基于初始故障诊断模型,对增量任务进行训练,包括模型自适应阶段训练和模型融合阶段训练,通过蒸馏损失将新模型和旧模型进行整合,得到整合后的故障诊断模型;利用整合后的故障诊断模型对待检测的故障轴承振动信号进行故障诊断,得到待检测的故障轴承振动信号的故障类型;与传统的深度学习方法相比,本发明能缓解灾难性遗忘问题,更符合工业应用的实际场景。
-
公开(公告)号:CN117010149A
公开(公告)日:2023-11-07
申请号:CN202310731266.2
申请日:2023-06-20
Applicant: 苏州大学
IPC: G06F30/20 , G06F30/17 , G06F119/14
Abstract: 本发明公开了一种考虑齿轮外部激励的高速深沟球轴承故障动力学建模方法,包括以下步骤:步骤1:首先使用一个考虑到相对滑移、柔性保持架和滚子独立自由度的动态高速深沟球轴承模型;步骤2:在高速轴承模型基础上,进一步考虑了齿轮外部激励的影响,建立考虑齿面点蚀等局部故障的直齿轮啮合副描述方法;步骤3:建立完备的齿轮箱动力学模型;在前两个步骤的基础上,引入齿轮啮合传动误差、驱动电机与制动器;步骤4:使用数值求解方法对微分方程组进行求解,得到系统的动态响应。本发明,可以更加全面的描述齿轮箱中各个部件的接触、润滑、故障情况等,得到更加准确的高速轴承故障特征,为故障诊断与特征提取提供更全面的理论依据。
-
公开(公告)号:CN116429420A
公开(公告)日:2023-07-14
申请号:CN202310520434.3
申请日:2023-05-10
Applicant: 苏州大学
IPC: G01M13/04 , G01M13/045
Abstract: 本发明公开了一种LSTM指导下自适应广义解调的轴承故障特征同步增强提取方法,包括以下步骤:S1:引入倾斜角来确定广义解调的解调因子;S2:通过LSTM网络模型对信号的倾斜角进行自适应预测,利用得到的解调因子构建广义解调因子矩阵;S3:通过频率—幅值图确定感兴趣的分量解调之后所处的频率位置,实现对故障特征系数的预确定;S4:构造提取算子矩阵,之后进行逆向广义解调。本发明,在广义解调方法的框架下,在不依赖于对时频脊线预提取的基础上,利用LSTM网络模型实现对解调因子的自适应构建,通过构造解调因子矩阵和提取算子矩阵等,实现对多分量信号的同步化增强提取。
-
公开(公告)号:CN118467995A
公开(公告)日:2024-08-09
申请号:CN202410373237.8
申请日:2024-03-29
Applicant: 苏州大学
IPC: G06F18/213 , G01M13/021 , G01M13/028 , G01M13/045 , G06N3/0464 , G06N3/084
Abstract: 本发明提供一种基于时变卷积核的机械关键部件故障特征增强方法及系统,涉及机械设备信号处理技术领域,该方法包括基于广义解调变换将变化的时频曲线解调至固定频率处,通过引入角度参数,参数化广义解调因子;将参数化的广义解调因子嵌入CNN网络中,设计时变卷积层,实现对角度参数的自适应学习更新;使用设计好的时变卷积层代替CNN网络中的第一层卷积层,构建神经网络故障诊断模型,利用构建好的神经网络故障诊断模型对采集到的变转速信号进行处理,增强转速相关故障特征。本发明方法无需依赖先验知识,可实现故障类型的有效、准确分类。
-
-
-
-
-
-