-
公开(公告)号:CN116011593B
公开(公告)日:2023-06-16
申请号:CN202310253084.9
申请日:2023-03-09
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种网络模型能耗的确定方法及装置,该方法包括:获取目标网络模型在训练过程的训练浮点计算总量;获取目标网络模型的当前调用量,当前调用量表示调用目标网络模型执行业务预测任务的次数;基于当前调用量及目标网络模型在单次业务预测任务执行过程的第一浮点计算量,确定预测浮点计算总量;基于训练浮点计算总量和预测浮点计算总量,确定目标网络模型的当前能耗量。
-
公开(公告)号:CN116011593A
公开(公告)日:2023-04-25
申请号:CN202310253084.9
申请日:2023-03-09
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种网络模型能耗的确定方法及装置,该方法包括:获取目标网络模型在训练过程的训练浮点计算总量;获取目标网络模型的当前调用量,当前调用量表示调用目标网络模型执行业务预测任务的次数;基于当前调用量及目标网络模型在单次业务预测任务执行过程的第一浮点计算量,确定预测浮点计算总量;基于训练浮点计算总量和预测浮点计算总量,确定目标网络模型的当前能耗量。
-
公开(公告)号:CN117371517A
公开(公告)日:2024-01-09
申请号:CN202311367619.1
申请日:2023-10-20
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N3/0985 , G06N3/084 , G06F18/214 , G06V10/774 , G06T1/20
Abstract: 本说明书提供一种深度学习模型的元学习方法以及深度学习模型的元学习系统,涉及深度学习技术领域。该深度学习模型的元学习方法应用于包括N个处理节点的集群,其中,该方法包括:获得训练数据集,上述训练数据集包括多个任务对应的训练样本;以及,通过上述集群中的N个处理节点并行地基于上述训练数据集对上述深度学习模型进行多次迭代训练,得到该深度学习模型的元学习参数。其中,在每次迭代训练中,上述N个处理节点中的每个处理节点使用训练数据集中的部分训练样本学习该深度学习模型的部分参数,上述部分训练样本对应于同一任务。
-
-