-
公开(公告)号:CN115855038B
公开(公告)日:2024-01-09
申请号:CN202211465410.4
申请日:2022-11-22
Applicant: 哈尔滨工程大学 , 哈尔滨哈船智聚创新科技发展有限公司
Abstract: 本发明公开一种短时高精度姿态保持方法,包括:获取陀螺仪输出和加速度计输出;基于加速度计输出和当地重力加速度,得到自身初始姿态信息;基于自身初始姿态信息和陀螺仪输出,得到航向角,作为航向输出;基于加速度计输出和当地重力加速度,得到俯仰角和横揺角,并进行低通滤波处理,将低通滤波处理后的俯仰角和横揺角作为水平姿态输出,实现姿态测量。本发明能够在不依赖任何外界信息的条件下快速完成初始姿态的确定,后续姿态测量也无需接受任何外界信息,抗干扰能力强。经过剧烈角运动后仍能实现高精度的姿态测量,提高姿态计算的精度,实现较低成本条件下的高精度姿态测量。(56)对比文件申强等《.多传感器信息融合导航技术》.北京理工大学出版社,2020,34-35.Bo Xu等.Error Modeling and SimulationAnalysis for the Vehicle Launching SystemErecting《.Advanced Materials Research》.2012,全文.高薪;卞鸿巍;傅中泽;张礼伟.捷联惯导晃动基座四元数估计对准算法.中国惯性技术学报.2014,(第06期),全文.孙立江;周召发;陈河;刘朋朋;郭琦.激光捷联惯导多矢量定姿法晃动基座粗对准.压电与声光.2016,(第02期),全文.
-
公开(公告)号:CN116858286A
公开(公告)日:2023-10-10
申请号:CN202310821020.4
申请日:2023-07-06
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于特殊欧式群和地球坐标系的线性传递对准方法,包括:将主惯性导航系统的导航信息传递给子惯性导航系统作为初始导航信息,其中所述初始导航信息包括初始姿态、初始速度和初始位置;子惯性导航系统通过初始导航信息进行导航解算,并引入李群理论,构建误差向量,获取传递对准误差和传递对准误差状态模型;基于主惯性导航系统的导航信息构建误差观测模型,采用卡尔曼滤波器对所述传递对准误差进行误差估计,并根据误差定义对所述子惯性导航系统进行反馈校正,获得所述子惯性导航系统准确的姿态和速度,完成传递对准。本发明具有计算量小、无数学奇异点、具备全球导航能力等优点。
-
公开(公告)号:CN115031724A
公开(公告)日:2022-09-09
申请号:CN202210279711.1
申请日:2022-03-21
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种SINS/DVL紧组合系统DVL波束故障处理方法,步骤一、进行捷联惯性导航系统初始对准,然后将声学多普勒计程仪波束量测信息传送到捷联惯性导航系统;步骤二:构建捷联惯性导航系统状态参量X及状态方程;步骤三、选取捷联惯性导航系统量测量Z并构建量测方程,步骤四:利用基于新息的χ2检验方法对接收到的DVL波束量测信息进行故障检测,步骤五、根据不同波束故障情况,重构故障波束速度信息。本发明直接使用了DVL原始的波束量测信息,能够更加充分的获得可利用的有效信息,当部分波束量测出现故障时,本发明通过相应的波束信息故障处理方法使组合导航系统依旧维持较高的导航精度。
-
公开(公告)号:CN115031725B
公开(公告)日:2024-10-15
申请号:CN202210280446.9
申请日:2022-03-21
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种DVL多波束标定方法,包括:建立DVL波束量测结构模型,对模型进行四元数表示,选取状态量和量测信息,建立基于四元数表示的状态预测方程、量测预测方程和非线性量测方程的雅克比矩阵;使用EKF对四波束进行标定,将状态预测方程、量测预测方程和非线性量测方程的雅克比矩阵代入卡尔曼滤波器中得到安装偏差角四元数及结构角误差估计值;重置卡尔曼滤波器中状态量及状态先验协方差矩阵,状态量作为下一次滤波的状态初值,获得载体速度信息的迭代更新公式,重复迭代循环次数n,获得安装偏差角四元数及结构角误差估计值。本发明提高了标定精度,在迭代后具有更稳定的误差均值及标准差。
-
公开(公告)号:CN114840003B
公开(公告)日:2024-08-02
申请号:CN202210279687.1
申请日:2022-03-21
Applicant: 哈尔滨工程大学
IPC: G05D1/485 , G05D101/10
Abstract: 本发明公开了一种单领航多AUV协同定位及轨迹跟踪控制方法,步骤一:建立跟踪器运动学模型、领航器运动学模型以及两者之间距离量测的模型;步骤二:根据步骤一建立的模型通过扩展卡尔曼滤波算法对领航器状态进行估计;步骤三:根据可观测性进行协同轨迹规划,确定跟踪器理想跟踪轨迹;步骤四:根据步骤二以及步骤三中的目标状态以及跟踪轨迹,设计控制器,完成对目标的跟踪。本发明所提出的方法具有很强的鲁棒性和有效性。对不同的多个跟踪器均有很好的效果。
-
公开(公告)号:CN115855038A
公开(公告)日:2023-03-28
申请号:CN202211465410.4
申请日:2022-11-22
Applicant: 哈尔滨工程大学 , 哈尔滨哈船智聚创新科技发展有限公司
Abstract: 本发明公开一种短时高精度姿态保持方法,包括:获取陀螺仪输出和加速度计输出;基于加速度计输出和当地重力加速度,得到自身初始姿态信息;基于自身初始姿态信息和陀螺仪输出,得到航向角,作为航向输出;基于加速度计输出和当地重力加速度,得到俯仰角和横揺角,并进行低通滤波处理,将低通滤波处理后的俯仰角和横揺角作为水平姿态输出,实现姿态测量。本发明能够在不依赖任何外界信息的条件下快速完成初始姿态的确定,后续姿态测量也无需接受任何外界信息,抗干扰能力强。经过剧烈角运动后仍能实现高精度的姿态测量,提高姿态计算的精度,实现较低成本条件下的高精度姿态测量。
-
公开(公告)号:CN114199249A
公开(公告)日:2022-03-18
申请号:CN202111448261.6
申请日:2021-11-30
Applicant: 哈尔滨工程大学
Abstract: 本发明属于多AUV协同定位技术领域,具体涉及一种改进ANFIS的多AUV协同定位量测异常检测方法。针对水下声学测距误差对AUV协同定位系统定位性能的影响,本发明以准确识别并隔离异常信息、保留准确信息为目标,利用ACKF提取特征信息,并基于预定义的量测异常状态,建立满足伯努利分布的混合数据库,实现了ANFIS规则的在线更新,有效提高了检测系统在少量“样本数据”情况下的可靠性和准确性。本发明将在线数据训练机制与基于ANFIS的异常检测系统相结合,利用ANFIS规则的检测输出对异常时刻的量测信息进行隔离,设置伯努利分布的标志位对滤波方程进行更改,有效提高了协同定位系统定位精度及稳定性。
-
公开(公告)号:CN115046554B
公开(公告)日:2024-12-13
申请号:CN202210293267.9
申请日:2022-03-23
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于马氏距离与神经网络辅助的AUV协同定位方法,本发明利用自适应容积卡尔曼滤波处理野值的同时,使用双阈值马氏距离来检测声学量测是否发生异常以及发生何种异常,如果量测正常更新则允许卡尔曼滤波结果对状态进行更新,如果量测发生异常则根据异常类型,使用不同的算法辅助滤波更新,以达到提高协同定位精度的目的。
-
公开(公告)号:CN114199248B
公开(公告)日:2023-07-25
申请号:CN202111444203.6
申请日:2021-11-30
Applicant: 哈尔滨工程大学
Abstract: 本发明属于水下多航行器协同导航技术领域,具体涉及一种基于混合元启发算法优化ANFIS的AUV协同定位方法。本发明基于AQPSO‑GA方法训练的ANFIS‑AQPSO‑GA模型具有更好拟合输入输出数据的能力。训练好的ANFIS‑AQPSO‑GA模型能在实时工作环境中,对丢失量测信息进行补偿,对异常量测信息进行修正,大大降低协同导航整体估计误差,提升长航时缺少基准位置条件下的定位精度。本发明采用ANFIS‑AQPSO‑GA结构设计的预测结构对协同定位方法本身计算复杂度无明显影响,能满足实时动态条件下的计算需求,且有效提升了协同定位算法的鲁棒性和定位精度。
-
公开(公告)号:CN114840003A
公开(公告)日:2022-08-02
申请号:CN202210279687.1
申请日:2022-03-21
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 本发明公开了一种单领航多AUV协同定位及轨迹跟踪控制方法,步骤一:建立跟踪器运动学模型、领航器运动学模型以及两者之间距离量测的模型;步骤二:根据步骤一建立的模型通过扩展卡尔曼滤波算法对领航器状态进行估计;步骤三:根据可观测性进行协同轨迹规划,确定跟踪器理想跟踪轨迹;步骤四:根据步骤二以及步骤三中的目标状态以及跟踪轨迹,设计控制器,完成对目标的跟踪。本发明所提出的方法具有很强的鲁棒性和有效性。对不同的多个跟踪器均有很好的效果。
-
-
-
-
-
-
-
-
-