一种考虑附着系数的自动驾驶汽车类人换道决策规划方法

    公开(公告)号:CN114030485B

    公开(公告)日:2023-11-03

    申请号:CN202111569940.9

    申请日:2021-12-21

    Applicant: 吉林大学

    Abstract: 本发明涉及一种考虑附着系数的自动驾驶汽车类人换道决策规划方法,将三种常见附着系数下的驾驶人换道数据分别送入三个基于LSTM的神经网络决策规划模型,先使用神经网络决策模型深度学习的方法学习人类换道决策行为,再使用神经网络规划模型深度学习的方法学习人类换道轨迹,得到当前交通环境下每种附着下的预测轨迹输出;在驾驶任务中,接收实际路面附着系数的估计值,结合离散附着系数的输出轨迹进行轨迹融合,得到当前实时决策行为以及规划轨迹。本发明研究人类驾驶员的驾驶行为与驾驶习性机理,并使自动驾驶汽车理解人类驾驶方式、像人类一样进行驾驶,提升人对自动驾驶汽车的乘坐认同感,为提升智能驾驶汽车接受度提供了参考。

    一种考虑附着系数的自动驾驶汽车类人换道决策规划方法

    公开(公告)号:CN114030485A

    公开(公告)日:2022-02-11

    申请号:CN202111569940.9

    申请日:2021-12-21

    Applicant: 吉林大学

    Abstract: 本发明涉及一种考虑附着系数的自动驾驶汽车类人换道决策规划方法,将三种常见附着系数下的驾驶人换道数据分别送入三个基于LSTM的神经网络决策规划模型,先使用神经网络决策模型深度学习的方法学习人类换道决策行为,再使用神经网络规划模型深度学习的方法学习人类换道轨迹,得到当前交通环境下每种附着下的预测轨迹输出;在驾驶任务中,接收实际路面附着系数的估计值,结合离散附着系数的输出轨迹进行轨迹融合,得到当前实时决策行为以及规划轨迹。本发明研究人类驾驶员的驾驶行为与驾驶习性机理,并使自动驾驶汽车理解人类驾驶方式、像人类一样进行驾驶,提升人对自动驾驶汽车的乘坐认同感,为提升智能驾驶汽车接受度提供了参考。

Patent Agency Ranking