一种利用磷酸盐制备太阳电池的方法

    公开(公告)号:CN110611001A

    公开(公告)日:2019-12-24

    申请号:CN201910906720.7

    申请日:2019-09-24

    Applicant: 南开大学

    Abstract: 本发明公开一种磷酸盐制备太阳电池的方法,包括以下步骤:在衬底上制备Mo金属电极;将Mo金属电极在浓度为5mmol/L的磷酸盐溶液中进行浸泡,然后以500℃~600℃退火30min,获得P掺杂的Mo电极;在P掺杂的Mo电极上形成金属预制层;对金属预制层进行后硒化处理或后硫化处理形成吸收层;在吸收层上形成缓冲层;在缓冲层上形成本征氧化锌层和掺杂氧化锌层;以及形成顶电极。本发明利用磷酸盐溶液对金属Mo电极进行浸泡并在500℃~600℃退火处理,有效提高了薄膜太阳电池的短路电流、开路电压和器件效率。

    一种脉冲式快速热处理半导体薄膜表面的方法

    公开(公告)号:CN107331615A

    公开(公告)日:2017-11-07

    申请号:CN201710511722.7

    申请日:2017-06-27

    Applicant: 南开大学

    CPC classification number: H01L21/324

    Abstract: 一种脉冲式快速热处理半导体薄膜表面的方法。表面处理是指在含S、Se、O、H等气氛中对半导体薄膜表面进行硫化、硒化、钝化或元素掺杂的过程。目的是提高半导体薄膜表面带隙,消除半导体薄膜表面悬挂键,钝化半导体薄膜表面缺陷,提高半导体薄膜导电能力。本发明提供的脉冲式快速热处理方法是在较低衬底温度下,采用高温或超高温度热处理半导体薄膜表面,处理温度500℃~1000℃,热处理时间60s以内。瞬间高温或超高温热处理可促进半导体薄膜表面化学反应发生,脉冲式快速热处理以及低衬底温度可实现半导体薄膜表面100nm厚度内的处理。

    一种等离子体辅助硒硫化处理装置及工艺

    公开(公告)号:CN102051603A

    公开(公告)日:2011-05-11

    申请号:CN201010518539.8

    申请日:2010-10-26

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 一种等离子体辅助硒硫化处理装置,设置于真空室内,包括壳体、阴极板和阳极板,阴极板和阳极板交替叠放形成等离子体发生器,阴极板设有固定半导体薄膜基板的沟槽,阳极板表面均布小孔并设有输气管、独立内加热电极和阳极测温点基于该处理装置的工艺为:1)在半导体薄膜材料上按化学式配比预制金属层,然后放入阴极板的沟槽中;2)将其置于真空室内抽真空,打开电源加热阴极板和阳极板,启动等离子体发生器电源,并通入硒或硫、氢、氩混合气体。本发明的优点:硒原子的反应活性高,金属预制层的硒化反应完全,光电转换效率高;基片的加热温度低,不易变形;采用电子方式监控两电极间容抗的变化,了解转化的进展,减少工业化生产的废品率。

    一种铜基薄膜太阳电池正电极及其制备方法

    公开(公告)号:CN111244197B

    公开(公告)日:2022-03-01

    申请号:CN202010062654.2

    申请日:2020-01-20

    Applicant: 南开大学

    Abstract: 本发明提供一种铜基薄膜太阳电池正电极及其制备方法,该铜基薄膜太阳电池正电极的制备方法,包括:在衬底上制备Mo金属电极;使用磷酸铵溶液处理所述Mo金属电极,获得铜基薄膜太阳电池正电极。本发明中使用磷酸铵溶液处理Mo金属电极,NH4+在Mo金属电极表面进行刻蚀,减少了界面缺陷态。正电极与光吸收层之间的接触更加匹配。同时PO43‑调整金属Mo的功函数,使其与光吸收层的能带匹配。经过处理,电池短路电流密度得到大幅提升,因此使效率获得提升。磷酸铵溶液处理Mo金属电极工艺简单,降低了太阳电池的制造成本。

    一种电镀金属Ga和Ga合金的溶液体系及其制备方法

    公开(公告)号:CN101805915A

    公开(公告)日:2010-08-18

    申请号:CN201010150362.0

    申请日:2010-04-20

    Applicant: 南开大学

    Abstract: 一种电镀金属Ga和Ga合金的溶液体系,由金属盐、导电盐、络合剂、有机酸、有机添加剂和溶剂水组成,各组份在溶液体系中的含量为:金属盐(0.05~0.5)mol/L、导电盐(1.0~4.0)mol/L、络合剂(0.1~0.8)mol/L、有机酸(0.5~3.0)mol/L、有机添加剂(4~20)g/L;该溶液体系用饱和浓度的碱性溶液调节pH值为1~6的范围内。本发明的优点是:该溶液体系具有良好的覆盖能力和分散能力、使用寿命长,制备的Ga薄膜光亮、均匀、无缺陷,金属薄膜的厚度和成份可通过控制沉积条件任意改变;且制备方法简单实用、设备投资小、成本低,适合于大规模产业化应用。

    一种具有P掺杂的Mo电极的太阳电池制备方法

    公开(公告)号:CN110611002B

    公开(公告)日:2021-09-24

    申请号:CN201910907568.4

    申请日:2019-09-24

    Applicant: 南开大学

    Abstract: 本发明公开一种具有P掺杂的Mo电极的太阳电池制备方法,包括以下步骤:在衬底上制备Mo金属电极;将所述Mo金属电极在浓度级别为mmol/L的磷酸根溶液中进行浸泡,然后以550℃退火30min,获得P掺杂的Mo电极;在所述P掺杂的Mo电极上形成金属预制层;对所述金属预制层进行后硒化处理或后硫化处理形成吸收层;在所述吸收层上形成缓冲层;在所述缓冲层上形成本征氧化锌层和掺杂氧化锌层;以及形成顶电极。

    一种薄膜太阳能电池制备方法

    公开(公告)号:CN109671803B

    公开(公告)日:2020-11-06

    申请号:CN201811333138.8

    申请日:2018-11-09

    Applicant: 南开大学

    Abstract: 本发明公开一种薄膜太阳能电池制备方法,包括以下步骤:在衬底上形成背电极;在背电极上形成金属预制层,将金属预制层在NaF溶液中进行浸泡处理并烘干,将烘干后的金属预制层进行后硒化处理形成吸收层;形成缓冲层;形成本征氧化锌层和掺杂氧化锌层;以及形成顶电极。本发明通过采用NaF溶液对金属预制层进行处理,使得薄膜太阳能电池的开路电压显著提高,器件效率得到了明显的提升。另外,本发明成本低廉,有利于商业化推广和应用。

    一种铜基薄膜太阳电池正电极及其制备方法

    公开(公告)号:CN111244197A

    公开(公告)日:2020-06-05

    申请号:CN202010062654.2

    申请日:2020-01-20

    Applicant: 南开大学

    Abstract: 本发明提供一种铜基薄膜太阳电池正电极及其制备方法,该铜基薄膜太阳电池正电极的制备方法,包括:在衬底上制备Mo金属电极;使用磷酸铵溶液处理所述Mo金属电极,获得铜基薄膜太阳电池正电极。本发明中使用磷酸铵溶液处理Mo金属电极,NH4+在Mo金属电极表面进行刻蚀,减少了界面缺陷态。正电极与光吸收层之间的接触更加匹配。同时PO43-调整金属Mo的功函数,使其与光吸收层的能带匹配。经过处理,电池短路电流密度得到大幅提升,因此使效率获得提升。磷酸铵溶液处理Mo金属电极工艺简单,降低了太阳电池的制造成本。

    用于制备太阳电池的半导体薄膜的含Sb溶液体系及制备方法

    公开(公告)号:CN102290484A

    公开(公告)日:2011-12-21

    申请号:CN201110106517.5

    申请日:2011-04-27

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 用于制备太阳电池的半导体薄膜的含Sb溶液体系及制备方法,涉及太阳电池领域的半导体薄膜制备技术。所述的溶液体系,由金属盐、导电盐、有机酸、无机酸和溶剂水组成,各组分在溶液体系的含量为:金属盐0.1~0.5mol/L、导电盐l~4mol/L、有机酸0.5~3mol/L、无机酸0.01~0.1mol/L,用饱和碱性溶液调节pH值到1~6.0。本发明的优点:溶液体系具有良好的覆盖能力和分散能力,使用寿命长,制备方法简单,投资设备小,适合大规模工业化生产,并且使用这种掺杂方法不仅可以使CIGS薄膜晶粒尺寸长大,而且可以有效的使不含Ga的CIS薄膜晶粒尺寸长大。适用于CuInS2、InGaAs等半导体材料。

Patent Agency Ranking