-
公开(公告)号:CN115717868B
公开(公告)日:2023-11-07
申请号:CN202211221112.0
申请日:2022-10-08
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明涉及三维测量系统领域技术领域,特别涉及一种非接触式三维扫描测量系统。一种实时在线的三维自动化扫描测量系统,包括:AGV小车、协作机器人、高精度光学扫描测头、固定式光学跟踪器、基于5G技术的数据无线传输单元、数据处理单元以及自动化控制单元。本发明利用高精度光学扫描测头采集被测工件的图像信息,通过5G技术实时、快速传送给数据处理单元,数据处理单元完成点云数据解算、点云去噪、点云网格化及形位公差分析等数据处理,得到的测量结果上传至云服务器,实现测量结果云共享。有效解决了现有在线测量系统在对工件进行实时在线测量时安全性差、编程复杂、适应性差、测量数据因无法实时共享而造成检测效率低的问题。
-
公开(公告)号:CN114061514B
公开(公告)日:2023-09-01
申请号:CN202111263050.5
申请日:2021-10-28
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明公开了一种相对行程传感器的超高速动态校准装置,该动态校准装置在固定平台的顶部固定安装有传感器支架和激光干涉仪;动滑台与固定平台滑动配合;直线电机和光栅尺固定安装于固定平台的顶部;直线电机的输出端与动滑台固定连接;传感器支架用于固定安装待校准的相对行程传感器;动滑台的顶部固定安装有卷线机构,卷线机构用于卷收相对行程传感器的拉绳且记录旋转角度;在动滑台上安装有与激光干涉仪位置相对的角锥棱镜,激光干涉仪和角锥棱镜配合来测量动滑台的移动距离。上述动态校准装置可以有效地实现相对行程传感器的超高速、大加速度、大位移动态校准,解决了现有相对行程传感器的超高速动态校准难题。
-
公开(公告)号:CN112505655B
公开(公告)日:2023-08-08
申请号:CN202011360183.X
申请日:2020-11-27
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明提出一种基于光强检测的调频激光测距系统快速调焦装置及方法,能够快速、准确地进行调焦。可调谐激光器发射的测量激光经分束器分光后,一路进入耦合器,另一路进入环形器;测量光出环形器后经过光纤法兰出射,然后经光路系统汇聚于光束汇聚点;经被测目标反射后返回的光通过环形器进入耦合器,与经分束器分光后的参考光进行耦合拍频,拍频后的低频光进入光电探测器;经光电探测器探测后转换成电信号送入采集与处理模块,采集与处理模块解算得到电信号的幅值信息,电信号的幅值信息对应光信号的光强值;调焦电机的角度与调焦镜在其运动行程中的位置对应,由此利用回波光强表征调焦效果,寻找的调焦过程中的光强最强位置即是最佳调焦位置。
-
公开(公告)号:CN116164662A
公开(公告)日:2023-05-26
申请号:CN202211431558.6
申请日:2022-11-15
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明提出一种回转类零件的三维自动化扫描测量系统,解决了现有测量设备行程对测量影响的问题。包括:零件旋转变位机构、水平移动机构、六自由度机器人、高精度三维激光扫描测量仪、被测零件;所述零件旋转变位机构包括动力座、尾座、辅助支撑座及底座;所述动力座、尾座及辅助支撑座与底座连接,所述底座与地面通过螺栓固定;所述水平移动机构包括支架、双直线导轨滑块结构、齿条、齿轮、电机、减速器与移动平台;所述双直线导轨滑块结构水平固定在所述支架上,所述移动平台上设置有机器人安装支架,所述机器人安装支架上安装六自由度机器人,所述六自由度机器人末端安装连接法兰,所述连接法兰安装高精度三维激光扫描测量仪。
-
公开(公告)号:CN113029069A
公开(公告)日:2021-06-25
申请号:CN202110353329.6
申请日:2021-04-01
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明涉及一种相对行程传感器动态校准装置,所述校准装置中,传感器固定架顶部固定待校准的行程传感器,行程传感器上固连拉绳,进而拉绳穿入滑轮组机构后穿出至滑台,滑台对向设置激光干涉仪;滑轮组机构设置在气浮花岗岩平台的一端,激光器干涉仪设置在气浮花岗岩平台的另一端。本发明的校准装置,更加合理地评估相对行程传感器的动态特性,有助于针对不同的动态工况选择不同动态特性的相对行程传感器。
-
公开(公告)号:CN107728157B
公开(公告)日:2021-05-18
申请号:CN201710865175.2
申请日:2017-09-22
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明属于工程测量技术领域,具体涉及一种高精度线性调频激光测距系统的全光纤光路结构。包括光纤耦合透镜组、光纤输入输出双向端口、光纤输入端口、光纤输出端口、光纤环形器、指示激光光源、激光种子光源、激光泵浦光源、参考光探测器和测量光探测器;光纤耦合透镜组通过光纤输入输出双向端口与光纤环形器连接,指示激光光源、激光种子光源和激光泵浦光源分别通过光纤输入端口与光纤环形器连接,参考光探测器和测量光探测器分别通过光纤输出端口与光纤环形器连接。本发明克服了空间光路和光纤光路各自的缺点,汲取了各自的优点,能够解决高精度线性调频激光测距系统易受环境变化影响的问题。
-
公开(公告)号:CN112634373A
公开(公告)日:2021-04-09
申请号:CN202011382690.3
申请日:2020-12-01
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明提出一种基于零膨胀陶瓷标定板的视觉测量系统校正方法,能够克服测试过程中高低温变化及传输路径气流密度变化对测量准确度的影响。在视觉测量系统的被测视场空间内放置零膨胀陶瓷标定板,零膨胀陶瓷标定板上设置有靶点;测量时,视觉测量系统中的各相机进行实时图像采集,提取得到零膨胀陶瓷标定板上各靶点的图像坐标,并计算重投影误差e,当e大于预设阈值s时,进行参数校正;参数校正过程为:首先建立零膨胀陶瓷标定板上各靶点的真实值与预测值之间的关系,进而得到畸变校正模型;然后将视觉测量系统静态参数标定条件下直接计算出的测点空间相对坐标输入到畸变校正模型中进行计算,其输出值即为畸变校正后的测点空间三维坐标。
-
公开(公告)号:CN112415493A
公开(公告)日:2021-02-26
申请号:CN202011352856.7
申请日:2020-11-27
Applicant: 北京航天计量测试技术研究所
IPC: G01S7/497
Abstract: 本发明提出一种三维扫描激光雷达坐标误差修正方法,通过建立误差模型确定影响其三维坐标测量精度的误差来源,然后对误差进行修改,从而提高三维扫描激光雷达的测量精度。该误差修正方法的步骤包括:建立理论计算模型、分析测量误差来源、建立误差模型、求解误差模型以及实施坐标修正;在建立误差模型时,综合考虑26项误差因子,得到包含误差量、方位角度、俯仰角度、距离的三维直角坐标的计算表达式,即误差模型。
-
公开(公告)号:CN107883889B
公开(公告)日:2020-10-23
申请号:CN201711039665.3
申请日:2017-10-31
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 一种基于激光散斑干涉的振动试验三维变形测量装置,其特征在于:包括高速相机1、激光器2、斩波器7,激光器2发出的光经分光镜A3分出光束A,后又经分光镜B4分出光束B,后又经分光镜C5分成光束C和光束D。斩波器7通过电机带动圆形叶片绕中心轴旋转,5个出光口一组,每组间隔90°,且∠A=∠B=∠C=15°其中光束A为x向和z向的共用光束,经X1出光口出射;光束B为z向测量光束,经Z出光口出射;光束C为y向测量光束,经Y出光口出射;光束D为x向测量光束,经X2出光口出射。
-
公开(公告)号:CN107515012B
公开(公告)日:2020-10-23
申请号:CN201710599042.5
申请日:2017-07-21
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01C25/00
Abstract: 一种基于单轴旋转机构的动态视觉测量系统校准装置,包括单轴旋转机构,标志点粘贴在单轴旋转机构的旋转平面上,旋转机构控制柜通过电缆与单轴旋转机构连接,视觉测量系统安装在三脚架上,且视觉测量系统与单轴旋转机构通过同步触发线连接。视觉测量系统包括左右两台相机,左右两台相机的公共视场能覆盖单轴旋转机构的旋转平面。
-
-
-
-
-
-
-
-
-