-
公开(公告)号:CN112800543B
公开(公告)日:2022-09-13
申请号:CN202110110022.3
申请日:2021-01-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F119/14
Abstract: 本发明公开了一种基于改进Goman模型的非线性非定常气动力建模方法:建立Goman模型;Goman模型描述气流分离点动态特性时,同时引入攻角速率及分离位置指数项的影响,从而形成改进Goman模型;建立模型参数识别框架;基于参数识别框架,辨识静态气动力模型参数;基于参数辨识框架,辨识动态气动力模型参数;基于静态气动力模型参数和动态气动力模型参数,完成气动力模型建模。本发明提出的建模方法所得模型不仅能表达定攻角速率的气动力特性,而且能表达攻角做大幅值简谐运动时的气动力特性,模型计算结果与风洞试验数据有较好的一致性,本发明具有广泛的适用性,可以应用于气动仿真和飞行控制系统设计,具有较好的工程应用前景。
-
公开(公告)号:CN113886978B
公开(公告)日:2022-02-15
申请号:CN202111498256.6
申请日:2021-12-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F111/04 , G06F113/08 , G06F113/28 , G06F119/14
Abstract: 本发明公开了一种面对称凹曲面标模气动布局的设计方法及外形,包括步骤:S1,设计飞行器头部区域轮廓线;S2,设计飞行器表面平板区域轮廓线;S3,设计飞行器凹曲面结构;S4,将步骤S3设计的凹曲面结构进行曲面导圆角处理,得到飞行器结构外形;本发明提供了一种新的具备面对称凹曲面特征的飞行试验标模气动布局设计方法及基于该气动布局设计方法生成的外形,可以为边界层转捩研究提供一种可选的标模方案。
-
公开(公告)号:CN113886978A
公开(公告)日:2022-01-04
申请号:CN202111498256.6
申请日:2021-12-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F111/04 , G06F113/08 , G06F113/28 , G06F119/14
Abstract: 本发明公开了一种面对称凹曲面标模气动布局的设计方法及外形,包括步骤:S1,设计飞行器头部区域轮廓线;S2,设计飞行器表面平板区域轮廓线;S3,设计飞行器凹曲面结构;S4,将步骤S3设计的凹曲面结构进行曲面导圆角处理,得到飞行器结构外形;本发明提供了一种新的具备面对称凹曲面特征的飞行试验标模气动布局设计方法及基于该气动布局设计方法生成的外形,可以为边界层转捩研究提供一种可选的标模方案。
-
公开(公告)号:CN112989497A
公开(公告)日:2021-06-18
申请号:CN202110431315.1
申请日:2021-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/20 , G06F17/16 , G06F119/08
Abstract: 本发明公开了基于几何空间主特征提取的紧支径向基函数数据传递方法,包括步骤:步骤一,提取飞行器整体外形或局部构件外形生成的计算气动热的结构型计算网格和计算温度场的非结构型计算网格的原始网格节点坐标,形成原始坐标矩阵;步骤二,对步骤一中形成的原始坐标矩阵进行主成分分析,得到特征矢量矩阵;步骤三,用所述特征矢量矩阵对所述原始坐标矩阵进行坐标变换;步骤四,对步骤三中坐标转换后的节点坐标进行几何尺度归一;步骤五,对归一后的节点坐标基于紧支径向基函数进行插值等;本发明对飞行器的气动热环境和结构场的温度实现更精细的预测,实现更高精度的数据传递;提高了网格交界面处的插值效率,进而提升了数据传递效率等。
-
公开(公告)号:CN112800543A
公开(公告)日:2021-05-14
申请号:CN202110110022.3
申请日:2021-01-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F119/14
Abstract: 本发明公开了一种基于改进Goman模型的非线性非定常气动力建模方法:建立Goman模型;Goman模型描述气流分离点动态特性时,同时引入攻角速率及分离位置指数项的影响,从而形成改进Goman模型;建立模型参数识别框架;基于参数识别框架,辨识静态气动力模型参数;基于参数辨识框架,辨识动态气动力模型参数;基于静态气动力模型参数和动态气动力模型参数,完成气动力模型建模。本发明提出的建模方法所得模型不仅能表达定攻角速率的气动力特性,而且能表达攻角做大幅值简谐运动时的气动力特性,模型计算结果与风洞试验数据有较好的一致性,本发明具有广泛的适用性,可以应用于气动仿真和飞行控制系统设计,具有较好的工程应用前景。
-
公开(公告)号:CN119734826A
公开(公告)日:2025-04-01
申请号:CN202510259207.9
申请日:2025-03-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明涉及飞行器壁面摩擦阻力控制技术领域,公开了基于微吹气表面的层流/湍流摩阻一体化控制装置及方法。控制装置多个组件协同工作,在层流或湍流状态下智能调节微吹气单元的开启和关闭,通过实时监测飞行器表面的边界层状态,动态调整微吹气单元的工作模式。在层流状态下,微吹气单元不产生微吹气,通过多孔表面减阻;在湍流状态下,微吹气单元产生微吹气,通过微气流隔离湍流结构与壁面,减小湍流摩擦。通过这种智能调节,系统能够根据实际飞行环境优化阻力性能,从而提高飞行效率和节省能源。
-
公开(公告)号:CN112989497B
公开(公告)日:2021-08-10
申请号:CN202110431315.1
申请日:2021-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/20 , G06F17/16 , G06F119/08
Abstract: 本发明公开了基于几何空间主特征提取的紧支径向基函数数据传递方法,包括步骤:步骤一,提取飞行器整体外形或局部构件外形生成的计算气动热的结构型计算网格和计算温度场的非结构型计算网格的原始网格节点坐标,形成原始坐标矩阵;步骤二,对步骤一中形成的原始坐标矩阵进行主成分分析,得到特征矢量矩阵;步骤三,用所述特征矢量矩阵对所述原始坐标矩阵进行坐标变换;步骤四,对步骤三中坐标转换后的节点坐标进行几何尺度归一;步骤五,对归一后的节点坐标基于紧支径向基函数进行插值等;本发明对飞行器的气动热环境和结构场的温度实现更精细的预测,实现更高精度的数据传递;提高了网格交界面处的插值效率,进而提升了数据传递效率等。
-
-
-
-
-
-