一种稀疏矩阵向量乘运算时间预测方法及系统

    公开(公告)号:CN111914213B

    公开(公告)日:2023-11-10

    申请号:CN202010759916.0

    申请日:2020-07-31

    Abstract: 本发明涉及一种稀疏矩阵向量乘运算时间预测方法及系统,其中,方法包括以下步骤:构建卷积神经网络,卷积神经网络包括输入层、特征处理层、数据拼接层以及输出层,其中,输入层用于输入稀疏矩阵中的行特征矩阵的特征、列特征矩阵的特征、体系结构参数扩展矩阵的特征;特征处理层用于提取上一层中的特征;数据拼接层,用于对提取的行特征矩阵的特征、列特征矩阵的特征、体系结构参数扩展矩阵的特征进行拼接;输出层用于输出预测结果;获取多组已知稀疏矩阵向量乘运算时间的稀疏矩阵作为样本数据,将样本数据输入至卷积神经网络以实现对卷积神经网络的训练;将待分类的稀疏矩阵输入至训练完成的卷积神经网络,实现稀疏矩阵向量乘运算时间的预测。

    一种基于优化算法的对等模式并行处理方法及框架

    公开(公告)号:CN111176865A

    公开(公告)日:2020-05-19

    申请号:CN201911415137.2

    申请日:2019-12-31

    Abstract: 本发明提供了一种基于优化算法的对等模式并行处理方法及框架,其中,方法步骤包括:主管理进程进行非阻塞式接收,接收来自子管理进程的收敛信号,根据第一预设算法进行水文模拟和纳什系数计算,生成一组适应值,对适应值进行排序处理,选择最优解;子管理进程进行非阻塞式接收广播,用于接收来自主管理进程的退出信号,再进行非阻塞式接收,用于接收来自计算进程的收敛信号,然后根据第二预设算法进行水文模拟和纳什系数计算,生成一组适应值,并对适应值进行排序,选择最优解;计算进程进行非阻塞式接收广播,用于接收来自子管理进程的退出信号;根据第一预设算法进行水文模拟和纳什系数计算,生成一组适应值,对适应值进行排序,选择最优解。

    一种双调归并排序调优方法及装置

    公开(公告)号:CN103514042A

    公开(公告)日:2014-01-15

    申请号:CN201210204459.4

    申请日:2012-06-18

    Abstract: 本发明涉及一种双调归并排序调优方法及装置。根据GPU和CPU的运算能力,分配待排序数据集;GPU和CPU对各自分配的待排序数据集进行排序;其中,排序过程中,当GPU和CPU中的数据有无关性时,同时使用CPU和GPU分别排序,在两部分数据有相关性时,将数据汇集到GPU和CPU中的一个设备上排序。由此,可以更好的重叠计算、缩短双调归并排序的执行时间,提高执行效率。

Patent Agency Ranking