一种运载火箭信息一体化电气系统

    公开(公告)号:CN106598060A

    公开(公告)日:2017-04-26

    申请号:CN201510660424.5

    申请日:2015-10-14

    Abstract: 本发明涉及一种运载火箭信息一体化电气系统,由箭上集中控制设备、地面集中控制设备、箭上测量监测设备和地面测量监测设备组成,箭上集中控制设备用于运载火箭飞行过程中自主实施对运载火箭的集中控制;地面集中控制设备用于在地面测试时控制箭上工作状态;箭上测量监测设备用于在飞行过程中监测火箭各系统的运行参数;地面测量监测设备用于在地面测试过程中对表征运载火箭工作状态的运行参数进行监测;整个电气系统箭地主要通过1553B总线进行数据通信,地面主要通过以太网进行数据通信。本发明的运载火箭电气系统具有一体化、通用化、集成化和自动化的特点。

    一种运载火箭冗余时序控制系统

    公开(公告)号:CN106557022A

    公开(公告)日:2017-04-05

    申请号:CN201510628154.X

    申请日:2015-09-29

    Abstract: 本发明涉及一种运载火箭冗余时序控制系统,由箭载计算机、综合控制器、电阻盒、地面时序测试设备、显示终端及地面发控设备组成,综合控制器接收来自箭载计算机和地面发控设备的时间基准指令,根据预先装订的飞行时序数据控制相应的通路输出经电阻盒后至外部时序控制负载,电阻盒向地面时序测试设备提供时串测试信号、电磁阀波形采样信号、电爆电路监测信号和通路阻值信号接口,地面时序测试设备采样后通过显示终端进行显示供用户进行监视和判读。本发明的运载火箭冗余时序控制系统充分考虑了不同型号的通用性,可根据不同运载火箭构型进行灵活配置综合控制器和电阻盒的数量,具有高可靠性、高智能化和快速测试的特点。

    一种运载火箭压力传感器箭地复用系统

    公开(公告)号:CN120003729A

    公开(公告)日:2025-05-16

    申请号:CN202510105208.8

    申请日:2025-01-23

    Abstract: 本发明提供了一种运载火箭压力传感器箭地复用系统,其特征在于,包括:地面直测电源、地面控制电源、箭上电池、箭上配电装置、箭上压力传感器、地面直测装置、箭上增压控制装置,所述地面直测电源、地面控制电源、箭上电池分别与所述箭上配电装置连接,所述箭上配电装置与所述箭上压力传感器连接,所述箭上压力传感器分别通过两路RS485与所述地面直测装置和所述箭上增压控制装置连接,所述地面直测电源用于加注过程中供电,所述地面控制电源用于射前预增压过程中供电,所述箭上电池用于飞行增压过程中供电,所述箭上压力传感器用于测量贮箱内压力。本发明可减少运载火箭压力传感器的配套,降低型号成本,减少密封失效风险,提高系统可靠性。

    一种分布式航天飞行器智能供配电系统

    公开(公告)号:CN109066977B

    公开(公告)日:2021-09-28

    申请号:CN201810895753.1

    申请日:2018-08-08

    Abstract: 本发明涉及一种分布式航天飞行器智能供配电系统,由脉冲型电池、功能型电池、分区域的多台智能配电中心、主控设备、地面电源组成。脉冲型电池用于航天飞行器上对供电品质要求不高的负载供电,包括火工品、电磁阀、设备加温、电机类供电;功能型电池用于航天飞行器上对供电品质要求较高的负载供电,包括控制、测量类单机等。智能配电中心在航天飞行器上按区域分布,并通过标准总线相互连接。智能配电中心接收来自于主控设备的总线指令,完成航天飞行器上各负载供电的通断控制,并实现各负载短路、过流的智能切断保护。解决了传统航天飞行器电磁供配电系统体积大、重量重、集成化及智能化程度低的缺点,具有数字化、智能化、集成化和通用化特点。

    一种运载火箭冗余时序控制系统

    公开(公告)号:CN106557022B

    公开(公告)日:2021-04-23

    申请号:CN201510628154.X

    申请日:2015-09-29

    Abstract: 本发明涉及一种运载火箭冗余时序控制系统,由箭载计算机、综合控制器、电阻盒、地面时序测试设备、显示终端及地面发控设备组成,综合控制器接收来自箭载计算机和地面发控设备的时间基准指令,根据预先装订的飞行时序数据控制相应的通路输出经电阻盒后至外部时序控制负载,电阻盒向地面时序测试设备提供时串测试信号、电磁阀波形采样信号、电爆电路监测信号和通路阻值信号接口,地面时序测试设备采样后通过显示终端进行显示供用户进行监视和判读。本发明的运载火箭冗余时序控制系统充分考虑了不同型号的通用性,可根据不同运载火箭构型进行灵活配置综合控制器和电阻盒的数量,具有高可靠性、高智能化和快速测试的特点。

    一种分布式航天飞行器智能供配电系统

    公开(公告)号:CN109066977A

    公开(公告)日:2018-12-21

    申请号:CN201810895753.1

    申请日:2018-08-08

    CPC classification number: H02J13/0062 H02H7/262

    Abstract: 本发明涉及一种分布式航天飞行器智能供配电系统,由脉冲型电池、功能型电池、分区域的多台智能配电中心、主控设备、地面电源组成。脉冲型电池用于航天飞行器上对供电品质要求不高的负载供电,包括火工品、电磁阀、设备加温、电机类供电;功能型电池用于航天飞行器上对供电品质要求较高的负载供电,包括控制、测量类单机等。智能配电中心在航天飞行器上按区域分布,并通过标准总线相互连接。智能配电中心接收来自于主控设备的总线指令,完成航天飞行器上各负载供电的通断控制,并实现各负载短路、过流的智能切断保护。解决了传统航天飞行器电磁供配电系统体积大、重量重、集成化及智能化程度低的缺点,具有数字化、智能化、集成化和通用化特点。

    一种运载火箭冗余时序控制系统

    公开(公告)号:CN106406076A

    公开(公告)日:2017-02-15

    申请号:CN201610524903.9

    申请日:2016-07-06

    CPC classification number: G05B9/03

    Abstract: 本发明涉及一种运载火箭热试车控制系统,由后端测试设备、前端测试设备和箭上系统设备组成,其中后端测试设备与前端测试设备通过以太网进行数据通信,前端测试设备与箭上系统设备主要通过1553B总线进行数据通信;后端测试设备根据测试流程向前端测试设备发出控制指令,前端测试设备接收执行或转发至箭上系统设备执行,前端测试设备同时采集自身和箭上系统设备的反馈信号,发送至后端测试设备上进行显示。本发明的运载火箭热试车控制系统具有数字化、智能化、集成化和通用化的特点。

    一种运载火箭热试车控制系统

    公开(公告)号:CN106773843A

    公开(公告)日:2017-05-31

    申请号:CN201611119795.3

    申请日:2016-12-08

    CPC classification number: G05B19/04

    Abstract: 本发明涉及一种运载火箭热试车控制系统,由后端测试设备、前端测试设备和箭上系统设备组成,其中后端测试设备与前端测试设备通过以太网进行数据通信,前端测试设备与箭上系统设备主要通过1553B总线进行数据通信;后端测试设备根据测试流程向前端测试设备发出控制指令,前端测试设备接收执行或转发至箭上系统设备执行,前端测试设备同时采集自身和箭上系统设备的反馈信号,发送至后端测试设备上进行显示。本发明的运载火箭热试车控制系统具有数字化、智能化、集成化和通用化的特点。

    基于数字压力传感器的运载火箭贮箱冗余增压控制方法

    公开(公告)号:CN118128665A

    公开(公告)日:2024-06-04

    申请号:CN202410253880.7

    申请日:2024-03-06

    Abstract: 本发明提供了一种基于数字压力传感器的运载火箭贮箱冗余增压控制方法,本发明以高实时性数字压力传感器采集的压力信号作为信号源,在信号有效性判断、滤波处理和冗余判决后,完成增压压力差和目标压力值权重系数计算,根据权重系数结果判决增压控制方式,最终驱动六管冗余固态继电器控制增压电磁阀完成推进剂贮箱增压。本发明利用数字压力采集的高实时性的优点,应用冗余数据源、数据判决、指令输出的冗余设计方式,创新性提出了基于增压压力差和目标压力值加权控制方法。确保运载火箭贮箱增压控制系统在火箭飞行过程的工作可靠性和故障适应能力。

    基于电容层析成像技术的火箭液位测量系统

    公开(公告)号:CN116429206A

    公开(公告)日:2023-07-14

    申请号:CN202310599631.9

    申请日:2023-05-25

    Abstract: 本发明提供了一种基于电容层析成像技术的火箭液位测量系统,包括液位传感器、电容层析成像系统,液位传感器安装在火箭贮箱内部,电容层析成像系统包括:交流电压源模块、多路开关模块、数据采集模块、数据分析模块;电容层析成像系统用于将正弦波电压信号通过电缆束发送给部分液位传感器,并接收在贮箱内其余位置的液位传感器反馈的多路激励数据;以及将多路激励数据进行放大、滤波以及数模转换后,根据电容层析成像技术构建贮箱内液位的三维图像,通过三维图像结合贮箱的实际尺寸计算液位高度和液位体积。从而实现对不规则贮箱内液体三维成像,且不受火箭姿态和加速度方向的影响,有效降低测量误差,提高系统测量数据的可靠性。

Patent Agency Ranking