Abstract:
A method of forming a CIGS absorber layer using a three-stage co-evaporation process, which can improve the efficiency of a solar cell in the case where Na concentration of a substrate is low and thus the depletion layer of the CIGS absorber layer is thick. The method includes a first stage of co-evaporating In, Ga and Se to deposit them; a second stage of co-evaporating Cu and Se to deposit them; and a third stage of co-evaporating In, Ga and Se to deposit them, wherein Ga supply through evaporation in the first stage is greater than Ga supply through evaporation in the third stage.
Abstract:
The invention relates a thin-film solar cell. In the related art, a buffer layer, a transparent electrode, and a grid electrode are formed on a light absorption layer, but in the invention, the buffer layer and the transparent electrode are not formed on a light absorption layer, and the buffer layer, the transparent electrode, and the grid electrode are formed under a CIGS face such that solar light is directly input to the light absorption layer without obstacles, and the first electrode and the buffer layer are patterned in a saw-toothed structure to engage with each other to reduce a distance by which electrons or holes generated by absorbing light energy move to the electrode or the buffer layer.
Abstract:
Disclosed herein is a device for controlling a sample temperature during photoelectric measurement of the sample. The device for controlling a sample temperature during photoelectric measurement of the sample includes: a sample stage to which a measurement target sample is fixed; a cooling unit for cooling the sample by injecting air; and a temperature measuring unit having a thermometer that measures a temperature of the sample. The device has an effect of easily controlling the temperature of a measurement target sample by employing a direct control method for a sample temperature, in which air or cooled air is injected to the sample.
Abstract:
A method of fabricating an Ag—(Cu—)In—Ga—Se (A(C)IGS) based thin film using Se—Ag2Se core-shell nanoparticles, an A(C)IGS based thin film fabricated by the method, and a tandem solar cell having the A(C)IGS thin film are disclosed. More particularly, a method of fabricating a densified Ag—(Cu—)In—Ga—Se (A(C)IGS) based thin film by non-vacuum coating a substrate with a slurry containing Se—Ag2Se core-shell nanoparticles, an A(C)IGS based thin film fabricated by the method, and a tandem solar cell including the A(C)IGS based thin film are disclosed. According to the present invention, an A(C)IGS based thin film including Ag is manufactured by applying Se—Ag2Se core-shell nanoparticles in a process of manufacturing a (C)IGS thin film, thereby providing an A(C)IGS based thin film having a wide band gap.
Abstract:
Disclosed is a method of forming a chalcopyrite light-absorbing layer for a solar cell, including: forming a thin film including a chalcopyrite compound precursor; and radiating light on the thin film, wherein the chalcopyrite compound precursor absorbs light energy and is thus crystallized. When forming the chalcopyrite light-absorbing layer, light, but not heat, is applied, thus preventing problems, including damage to a substrate due to heat and formation of MoSe2 due to heating of the Mo rear electrode. Furthermore, long-wavelength light, which deeply penetrates the thin film, is first radiated, and short-wavelength light, which shallowly penetrates the thin film, is subsequently radiated, thereby sequentially forming the chalcopyrite light-absorbing layer from the bottom of the thin film.
Abstract:
Disclosed is a method of manufacturing a CI(G)S-based thin film, in which a slurry prepared by mixing two or more kinds of binary nanoparticles containing CI(G)S-based elements, a solution precursor containing a CI(G)S-based element, an alcoholic solvent and a chelating agent is used to reduce the carbon layer formed between the CI(G)S-based thin film and molybdenum, and which includes (a) mixing two or more kinds of binary nanoparticles containing CI(G)S-based elements, a solution precursor containing a CI(G)S-based element, an alcoholic solvent and a chelating agent, thus preparing a slurry; (b) subjecting the slurry to non-vacuum coating, thus forming a CI(G)S-based thin film; and (c) subjecting the CI(G)S-based thin film to selenization heat treatment.
Abstract:
A method for manufacturing a CZTS based thin film having a dual band gap slope, comprising the steps of: forming a Cu2ZnSnS4 thin film layer; forming a Cu2ZnSn(S,Se)4 thin film layer; and forming a Cu2ZnSnS4 thin film layer. A method for manufacturing a CZTS based solar cell having a dual band gap slope according to another aspect of the present invention comprises the steps of: forming a back contact; and forming a CZTS based thin film layer on the back contact by the method described above.
Abstract:
A method for manufacturing a CZTS based thin film having a dual band gap slope, comprising the steps of: forming a Cu2ZnSnS4 thin film layer; forming a Cu2ZnSn(S,Se)4 thin film layer; and forming a Cu2ZnSnS4 thin film layer. A method for manufacturing a CZTS based solar cell having a dual band gap slope according to another aspect of the present invention comprises the steps of: forming a back contact; and forming a CZTS based thin film layer on the back contact by the method described above.
Abstract:
The present invention relates to an encapsulant capable of reducing potential-induced degradation (PID). The encapsulant is used to seal a solar cell to form a photovoltaic module, in which silica gel is dispersed in the encapsulant as a sodium ion adsorbent. Since the silica gel that is highly transparent is used as the sodium ion adsorbent, it is possible to prevent PID attributable to sodium ions and to prevent deterioration in photovoltaic efficiency of the photovoltaic module. Since the silica gel has a high specific surface area, it is possible to adsorb sodium ions with a small amount of the silica gel.
Abstract:
A jig for a sample for a solar photovoltaic device is disclosed. The jig includes a cradle unit supporting the sample and a contact unit including at least one probe pin coming into contact with a busbar of the sample located in the cradle unit. The contact unit includes a coupling plate coupled with the cradle unit and at least one contact bar including a PCB and connected to the coupling plate, the contact bar having at least one probe pin aligned with the busbar of the sample with interposition of a probe pin connecting block. the jig includes a rotation support unit coupled with the cradle unit by a rotation shaft to allow the cradle unit to be rotated at an angle of 180° or greater so that upper and lower surfaces of the sample supported by the cradle unit are reversed.