基于加法秘密分享技术的高效安全线性整流函数运算方法

    公开(公告)号:CN113098840A

    公开(公告)日:2021-07-09

    申请号:CN202110212165.5

    申请日:2021-02-25

    Abstract: 本发明公开了一种基于加法秘密分享技术的高效安全线性整流函数运算方法,所述方法包括:获取来自第一服务器的第一数据以及来自第二服务器的第二数据;根据所述第一数据以及所述第二数据确定目标二进制字符串,并对所述目标二进制字符串执行拆分操作;将拆分后得到的数据分别发送给所述第一服务器和所述第二服务器,使所述第一服务器和所述第二服务器基于所述拆分后得到的数据调用安全比较算法,实现将所述目标二进制字符串与所述第一服务器、所述第二服务器之间的公共随机数进行比较,并基于比较结果输出安全线性整流函数运算的结果。解决了现有技术中实现一次安全线性整流函数运算需要产生大量通信开销,导致安全协议效率低下的问题。

    一种基于图神经网络的专利推荐方法及终端

    公开(公告)号:CN113902522B

    公开(公告)日:2024-08-27

    申请号:CN202111152619.0

    申请日:2021-09-29

    Abstract: 本发明公开了一种基于图神经网络的专利推荐方法及终端,所述方法包括:获取机构信息和专利信息,根据所述机构信息和所述专利信息构建机构与专利关系的知识图谱;根据所述机构与专利关系的知识图谱,基于图神经网络模型给卖方机构推荐与专利匹配度最高的买方机构列表,基于图神经网络模型给买方机构推荐与所述买方机构所提出的专利需求匹配度最高的卖方专利列表。本发明通过图谱的形式完成对专利及机构信息的抽取,经过编码及转化处理为图神经网络的图数据样本,利用图神经网络实现节点的图嵌入,采用预训练加微调的机制,经过推荐模型实现需求机构与待售专利之间的匹配,提高推荐质量。

    视频动作分类方法、装置、设备和存储介质

    公开(公告)号:CN117809381A

    公开(公告)日:2024-04-02

    申请号:CN202410232129.9

    申请日:2024-03-01

    Abstract: 本申请实施例提供视频动作分类方法、装置、设备和存储介质,涉及图像处理技术领域。该方法依次在每个时间步选取目标视频帧,调用依次级联的局部时空特征模块对目标视频帧进行脉冲编码后,再进行特征提取得到局部时空特征,调用依次级联的全局时空特征模块对局部时空特征进行脉冲编码后,再进行特征提取得到全局时空特征,利用循环神经网络模块从全局时空特征中提取分类时空特征,对分类时空特征进行分类预测得到视频动作分类结果。在特征提取过程中对输入的数据进行脉冲编码,将特征提取过程中乘法运算变为加法运算,降低网络处理过程的运算复杂度,尤其是在长时视频的场景下,能够减少运算时间,提升运算效率。

    基于加法秘密分享技术的高效安全线性整流函数运算方法

    公开(公告)号:CN113098840B

    公开(公告)日:2022-08-16

    申请号:CN202110212165.5

    申请日:2021-02-25

    Abstract: 本发明公开了一种基于加法秘密分享技术的高效安全线性整流函数运算方法,所述方法包括:获取来自第一服务器的第一数据以及来自第二服务器的第二数据;根据所述第一数据以及所述第二数据确定目标二进制字符串,并对所述目标二进制字符串执行拆分操作;将拆分后得到的数据分别发送给所述第一服务器和所述第二服务器,使所述第一服务器和所述第二服务器基于所述拆分后得到的数据调用安全比较算法,实现将所述目标二进制字符串与所述第一服务器、所述第二服务器之间的公共随机数进行比较,并基于比较结果输出安全线性整流函数运算的结果。解决了现有技术中实现一次安全线性整流函数运算需要产生大量通信开销,导致安全协议效率低下的问题。

    视频动作分类方法、装置、设备和存储介质

    公开(公告)号:CN117809381B

    公开(公告)日:2024-05-14

    申请号:CN202410232129.9

    申请日:2024-03-01

    Abstract: 本申请实施例提供视频动作分类方法、装置、设备和存储介质,涉及图像处理技术领域。该方法依次在每个时间步选取目标视频帧,调用依次级联的局部时空特征模块对目标视频帧进行脉冲编码后,再进行特征提取得到局部时空特征,调用依次级联的全局时空特征模块对局部时空特征进行脉冲编码后,再进行特征提取得到全局时空特征,利用循环神经网络模块从全局时空特征中提取分类时空特征,对分类时空特征进行分类预测得到视频动作分类结果。在特征提取过程中对输入的数据进行脉冲编码,将特征提取过程中乘法运算变为加法运算,降低网络处理过程的运算复杂度,尤其是在长时视频的场景下,能够减少运算时间,提升运算效率。

    一种基于图神经网络的专利推荐方法及终端

    公开(公告)号:CN113902522A

    公开(公告)日:2022-01-07

    申请号:CN202111152619.0

    申请日:2021-09-29

    Abstract: 本发明公开了一种基于图神经网络的专利推荐方法及终端,所述方法包括:获取机构信息和专利信息,根据所述机构信息和所述专利信息构建机构与专利关系的知识图谱;根据所述机构与专利关系的知识图谱,基于图神经网络模型给卖方机构推荐与专利匹配度最高的买方机构列表,基于图神经网络模型给买方机构推荐与所述买方机构所提出的专利需求匹配度最高的卖方专利列表。本发明通过图谱的形式完成对专利及机构信息的抽取,经过编码及转化处理为图神经网络的图数据样本,利用图神经网络实现节点的图嵌入,采用预训练加微调的机制,经过推荐模型实现需求机构与待售专利之间的匹配,提高推荐质量。

Patent Agency Ranking