基于投影矩阵面积特征选择的左心室肥大识别方法及系统

    公开(公告)号:CN117668611A

    公开(公告)日:2024-03-08

    申请号:CN202311600649.2

    申请日:2023-11-28

    Applicant: 鲁东大学

    Abstract: 本发明属于医学数据识别技术领域,公开了基于投影矩阵面积特征选择的左心室肥大识别方法及系统。该方法采用Stiefel流形上的混合下降方向和混合步长的投影类非单调线搜索方法,求解含有正交约束的最小二乘算法的目标函数,获得令预测标签到真实标签竖直距离最小的投影矩阵W,将投影矩阵W绘制成多边形图像,用图形语言的方式展示投影矩阵W中蕴含的各个特征信息,通过基于投影矩阵面积的特征选择方法PMA计算投影矩阵的面积,并且对各个特征信息特征进行评价;本发明获得一个最优的特征子集,将筛选后的特征子集投入分类模型中训练,不仅可以节省训练的时间还可以获得比原数据训练更高的识别率。

    基于投影矩阵面积特征选择的左心室肥大识别方法及系统

    公开(公告)号:CN117668611B

    公开(公告)日:2024-10-18

    申请号:CN202311600649.2

    申请日:2023-11-28

    Applicant: 鲁东大学

    Abstract: 本发明属于医学数据识别技术领域,公开了基于投影矩阵面积特征选择的左心室肥大识别方法及系统。该方法采用Stiefel流形上的混合下降方向和混合步长的投影类非单调线搜索方法,求解含有正交约束的最小二乘算法的目标函数,获得令预测标签到真实标签竖直距离最小的投影矩阵W,将投影矩阵W绘制成多边形图像,用图形语言的方式展示投影矩阵W中蕴含的各个特征信息,通过基于投影矩阵面积的特征选择方法PMA计算投影矩阵的面积,并且对各个特征信息特征进行评价;本发明获得一个最优的特征子集,将筛选后的特征子集投入分类模型中训练,不仅可以节省训练的时间还可以获得比原数据训练更高的识别率。

    一种基于语音信号的情感识别方法、装置和计算机设备

    公开(公告)号:CN108550375A

    公开(公告)日:2018-09-18

    申请号:CN201810208852.8

    申请日:2018-03-14

    Applicant: 鲁东大学

    Abstract: 本发明涉及一种基于语音信号的情感识别方法、装置和计算机设备,该方法包括:对语音输入信号进行预处理,得到由静态特征和一阶差分特征组成的混合的梅尔频率倒谱系数MFCC输入特征;将所述输入特征输入到经过语音情感训练的卷积神经网络模型中;使用所述经过语音情感训练的卷积神经网络模型作为分类器对所述输入特征进行分类,识别出与所述语音信号对应的情感。采用本发明的基于语音信号的情感识别方法,与其他基于语义、语音的情感识别方法相比,克服了识别准确率低的技术问题,可以区分不同的语音情感,且准确率令人满意;同时,根据实验结果可知,本方法具有较好的泛化能力。

Patent Agency Ranking