一种基于图注意力网络的隐性偏差指令预测方法及设备

    公开(公告)号:CN113238885A

    公开(公告)日:2021-08-10

    申请号:CN202110502177.1

    申请日:2021-05-08

    Applicant: 长安大学

    Abstract: 本发明提供了一种基于图注意力网络的隐性偏差指令预测方法及设备,通过关注节点的邻居,遵循自注意力机制来计算图中每个节点的隐式结构特征,一个节点的结构特征是通过聚合其邻居节点得到的。自注意力机制可以捕捉到节点对相邻节点的不同重要性。此外,本发明应用不同类型的边来表示指令之间不同类型的关系,包括分支关系、寻址关系、逻辑关系、定义‑使用关系。针对不同类型的边,使用注意力机制来聚合邻居节点。本发明将隐性偏差脆弱指令的预测任务看作图神经网络的分类任务,因此在节点聚合之后进行节点分类,从而得出隐性偏差脆弱指令的预测结果。本发明将整个过程分为三步,分别是数据采集、图计算和节点分类。

    一种基于图注意力网络的隐性偏差指令预测方法及设备

    公开(公告)号:CN113238885B

    公开(公告)日:2023-07-07

    申请号:CN202110502177.1

    申请日:2021-05-08

    Applicant: 长安大学

    Abstract: 本发明提供了一种基于图注意力网络的隐性偏差指令预测方法及设备,通过关注节点的邻居,遵循自注意力机制来计算图中每个节点的隐式结构特征,一个节点的结构特征是通过聚合其邻居节点得到的。自注意力机制可以捕捉到节点对相邻节点的不同重要性。此外,本发明应用不同类型的边来表示指令之间不同类型的关系,包括分支关系、寻址关系、逻辑关系、定义‑使用关系。针对不同类型的边,使用注意力机制来聚合邻居节点。本发明将隐性偏差脆弱指令的预测任务看作图神经网络的分类任务,因此在节点聚合之后进行节点分类,从而得出隐性偏差脆弱指令的预测结果。本发明将整个过程分为三步,分别是数据采集、图计算和节点分类。

Patent Agency Ranking