-
公开(公告)号:CN104573646A
公开(公告)日:2015-04-29
申请号:CN201410841099.8
申请日:2014-12-29
Applicant: 长安大学
CPC classification number: G06K9/6223 , G06K9/00369 , G06K9/00791 , G06K9/6202 , G06K9/6272 , G06K2209/21
Abstract: 本发明属于汽车主动安全领域,具体公开了一种基于激光雷达和双目相机的车前行人检测方法及系统,该方法包括如下步骤:利用激光雷达和双目相机采集车辆前方数据;分别对激光雷达和双目相机采集的数据进行处理,得到行人相对于车辆的距离、方位角及速度值;对得到的行人信息进行卡尔曼滤波器进行修正。本发明综合运用了立体视觉技术和遥感技术,融合激光雷达和双目视觉信息,测量精度高,行人检测正确率高,能有效降低交通事故发生率。
-
公开(公告)号:CN103605960B
公开(公告)日:2016-09-28
申请号:CN201310578627.0
申请日:2013-11-15
Applicant: 长安大学
Abstract: 本发明提供一种基于不同焦距视频图像融合的交通状态识别方法,通过对不同焦距的视频图像进行背景差法和自动背景更新算法检测运动区域,分别计算灰度特征参数和速度特征参数,然后通过BP神经网络对大量的灰度特征参数和速度特征参数数据进行训练,从而实现交通状态的识别。实验结果表明,本方法能够较好通过交通视频流识别出交通状况,并且易于实现、准确性较高,对促进交通诱导系统的研究和应用、解决城市中交通拥堵问题具有较高的应用价值。
-
公开(公告)号:CN105069774A
公开(公告)日:2015-11-18
申请号:CN201510375307.4
申请日:2015-06-30
Applicant: 长安大学
CPC classification number: G06K9/6217
Abstract: 本发明公开了一种基于多示例学习与图割优化的目标分割方法:步骤1:对训练图像采用多示例学习的方法进行显著模型建模,并利用显著模型对测试图像中的包和示例进行预测,得到测试图像的显著性检测结果;步骤2:将测试图像的显著性检测结果引入图割框架,依据示例特征矢量与示例包的标记对图割框架进行优化,求解图割优化的次优解,得到目标的精确分割。本发明采用多示例学习的方法建立显著性检测模型,使其适合特定种类的图像,并将显著性检测的结果用于基于图论的图像分割方法中以指导图像分割,对图割模型框架环节进行了优化,并采用凝聚层次聚类算法求解,使得分割结果能更好地符合语义感知的输出,得到精确的目标分割结果。
-
公开(公告)号:CN103605960A
公开(公告)日:2014-02-26
申请号:CN201310578627.0
申请日:2013-11-15
Applicant: 长安大学
Abstract: 本发明提供一种基于不同焦距视频图像融合的交通状态识别方法,通过对不同焦距的视频图像进行背景差法和自动背景更新算法检测运动区域,分别计算灰度特征参数和速度特征参数,然后通过BP神经网络对大量的灰度特征参数和速度特征参数数据进行训练,从而实现交通状态的识别。实验结果表明,本方法能够较好通过交通视频流识别出交通状况,并且易于实现、准确性较高,对促进交通诱导系统的研究和应用、解决城市中交通拥堵问题具有较高的应用价值。
-
公开(公告)号:CN104573646B
公开(公告)日:2017-12-12
申请号:CN201410841099.8
申请日:2014-12-29
Applicant: 长安大学
Abstract: 本发明属于汽车主动安全领域,具体公开了一种基于激光雷达和双目相机的车前行人检测方法及系统,该方法包括如下步骤:利用激光雷达和双目相机采集车辆前方数据;分别对激光雷达和双目相机采集的数据进行处理,得到行人相对于车辆的距离、方位角及速度值;对得到的行人信息进行卡尔曼滤波器进行修正。本发明综合运用了立体视觉技术和遥感技术,融合激光雷达和双目视觉信息,测量精度高,行人检测正确率高,能有效降低交通事故发生率。
-
公开(公告)号:CN105069774B
公开(公告)日:2017-11-10
申请号:CN201510375307.4
申请日:2015-06-30
Applicant: 长安大学
Abstract: 本发明公开了一种基于多示例学习与图割优化的目标分割方法:步骤1:对训练图像采用多示例学习的方法进行显著模型建模,并利用显著模型对测试图像中的包和示例进行预测,得到测试图像的显著性检测结果;步骤2:将测试图像的显著性检测结果引入图割框架,依据示例特征矢量与示例包的标记对图割框架进行优化,求解图割优化的次优解,得到目标的精确分割。本发明采用多示例学习的方法建立显著性检测模型,使其适合特定种类的图像,并将显著性检测的结果用于基于图论的图像分割方法中以指导图像分割,对图割模型框架环节进行了优化,并采用凝聚层次聚类算法求解,使得分割结果能更好地符合语义感知的输出,得到精确的目标分割结果。
-
-
-
-
-