基于雷达信号多特征融合的隐性裂缝自动检测方法

    公开(公告)号:CN119738887A

    公开(公告)日:2025-04-01

    申请号:CN202411669404.X

    申请日:2024-11-21

    Applicant: 长安大学

    Abstract: 本发明公开了基于雷达信号多特征融合的隐性裂缝自动检测方法,包括如下步骤:步骤1,对实际公路路段进行采集,获取探地雷达原始数据;步骤2,探地雷达信号数据的处理和多特征探地雷达数据集的构建;步骤3,基于Swin Transformer优化的二阶段贯通裂缝检测模型设计;步骤4,基于Swin Transformer‑YOLOv8优化的一阶段贯通裂缝检测模型设计。本发明能够更快速、更准确地识别和定位道路裂缝,减少了维护时间和成本,降低了由于裂缝导致的路面塌陷等安全风险,增强了模型对不同类型裂缝的识别能力,提升了检测模型的泛化性,有利于保持道路的完整性和延长道路使用寿命,能够连续监测道路状况,实时提供裂缝检测数据,为道路维护决策提供科学依据,提高了道路使用安全性。

    一种三维多视图成像下的路面结构层病害标注方法及装置

    公开(公告)号:CN119399168B

    公开(公告)日:2025-05-13

    申请号:CN202411521939.2

    申请日:2024-10-29

    Applicant: 长安大学

    Abstract: 本发明提供一种三维多视图成像下的路面结构层病害标注方法及装置,涉及计算机图像识别技术领域。包括:将水平面视图和纵断面视图拼接,得到跨视图的二维图像;构建包含多个多层次特征融合网络和空间金字塔池化层的水平面‑纵断面特征关联标注模型;利用训练集对该模型得到训练好的特征关联标注模型。这样,通过训练好的水平面‑纵断面特征关联标注模型对病害进行自动化标注,减少人工标注的时间,提高病害标注的效率;利用跨视图的二维图像,考虑相邻水平面视图和纵断面视图间的相似病害特征关联信息,优化该模型的标注性能,且通过训练好的水平面‑纵断面特征关联标注模型对病害进行自动化标注,减少误标和漏标,提高病害标注的准确性。

    一种三维多视图成像下的路面结构层病害标注方法及装置

    公开(公告)号:CN119399168A

    公开(公告)日:2025-02-07

    申请号:CN202411521939.2

    申请日:2024-10-29

    Applicant: 长安大学

    Abstract: 本发明提供一种三维多视图成像下的路面结构层病害标注方法及装置,涉及计算机图像识别技术领域。包括:将水平面视图和纵断面视图拼接,得到跨视图的二维图像;构建包含多个多层次特征融合网络和空间金字塔池化层的水平面‑纵断面特征关联标注模型;利用训练集对该模型得到训练好的特征关联标注模型。这样,通过训练好的水平面‑纵断面特征关联标注模型对病害进行自动化标注,减少人工标注的时间,提高病害标注的效率;利用跨视图的二维图像,考虑相邻水平面视图和纵断面视图间的相似病害特征关联信息,优化该模型的标注性能,且通过训练好的水平面‑纵断面特征关联标注模型对病害进行自动化标注,减少误标和漏标,提高病害标注的准确性。

Patent Agency Ranking