-
公开(公告)号:CN103729466B
公开(公告)日:2017-07-04
申请号:CN201410019885.X
申请日:2014-01-16
Applicant: 重庆邮电大学
Abstract: 本发明公开了一种基于WEB及GBBoosting算法的人名国别识别方法,属于WEB数据挖掘技术领域。该方法包括以下步骤:步骤一:通过WEB数据抽取技术提取高校学者人名;步骤二:构造GBBoosting算法:构造弱分类器,每个弱分类器对输入样本输出一个弱分类假设,通过所有弱分类器的权重融合构成一个强分类器;步骤三:通过GBBoosting算法识别所属的国别。本发明所述的基于WEB及GBBoosting算法的人名国别识别方法,有效的解决了两个国家人名拼写方式相近的情况下不能分类的问题;同时本方法比现有的其它分类方法更易实施,能更好的应用于人名国别或者城市国别语义标注等工程实践中。
-
公开(公告)号:CN103729467B
公开(公告)日:2017-01-18
申请号:CN201410020036.6
申请日:2014-01-16
Applicant: 重庆邮电大学
IPC: G06F17/30
Abstract: 本发明公开了一种复杂社交网络中的社区结构发现方法,属于网络技术领域。本方法包括以下步骤:步骤一:将社交网络转换为邻接矩阵形式,如果两个节点之间存在边,那么相对应的元素为1,否则为0;步骤二:利用随机游走理论对邻接矩阵进行处理,得到新的节点度数P-degree以及边权值P-weight;步骤三:根据新的节点度数P-degree得到社交网络中的领袖节点;步骤四:基于领袖节点生成子社区,并通过对子社区的一系列操作来进行社区发现。该方法能够高效的识别出社交网络中的社区结构,同时将本方法与一些经典的社区发现算法如Newman算法相比,在模块度指标上有着更好的表现。将本发明用于后续的社交网络实践中有着重要的意义。
-
公开(公告)号:CN103729466A
公开(公告)日:2014-04-16
申请号:CN201410019885.X
申请日:2014-01-16
Applicant: 重庆邮电大学
CPC classification number: G06F17/30675 , G06F17/2715 , G06F17/30734
Abstract: 本发明公开了一种基于WEB及GBBoosting算法的人名国别识别方法,属于WEB数据挖掘技术领域。该方法包括以下步骤:步骤一:通过WEB数据抽取技术提取高校学者人名;步骤二:构造GBBoosting算法:构造弱分类器,每个弱分类器对输入样本输出一个弱分类假设,通过所有弱分类器的权重融合构成一个强分类器;步骤三:通过GBBoosting算法识别所属的国别。本发明所述的基于WEB及GBBoosting算法的人名国别识别方法,有效的解决了两个国家人名拼写方式相近的情况下不能分类的问题;同时本方法比现有的其它分类方法更易实施,能更好的应用于人名国别或者城市国别语义标注等工程实践中。
-
公开(公告)号:CN103729467A
公开(公告)日:2014-04-16
申请号:CN201410020036.6
申请日:2014-01-16
Applicant: 重庆邮电大学
IPC: G06F17/30
CPC classification number: G06Q50/01
Abstract: 本发明公开了一种复杂社交网络中的社区结构发现方法,属于网络技术领域。本方法包括以下步骤:步骤一:将社交网络转换为邻接矩阵形式,如果两个节点之间存在边,那么相对应的元素为1,否则为0;步骤二:利用随机游走理论对邻接矩阵进行处理,得到新的节点度数P-degree以及边权值P-weight;步骤三:根据新的节点度数P-degree得到社交网络中的领袖节点;步骤四:基于领袖节点生成子社区,并通过对子社区的一系列操作来进行社区发现。该方法能够高效的识别出社交网络中的社区结构,同时将本方法与一些经典的社区发现算法如Newman算法相比,在模块度指标上有着更好的表现。将本发明用于后续的社交网络实践中有着重要的意义。
-
-
-