-
公开(公告)号:CN111382366B
公开(公告)日:2022-11-25
申请号:CN202010139426.0
申请日:2020-03-03
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06F16/33 , G06F16/35 , G06Q50/00
Abstract: 本发明涉及自然语言处理、网络安全、社交网络、信息提取领域,尤其涉及一种基于语言和非语言特征的社交网络用户识别方法及装置,方法包括收集社交网络用户账号的评论文本,将不同的用户账号两两组合,得到社交网络马甲识别训练集;基于社交网络马甲识别训练集,从中提取语言和非语言的特征,将语言和非语言特征进行横向拼接;使用SVM模型对数据集进行训练,得到马甲识别模型,利用特征选择技术贪心算法选择最优的特征组合;将提取实时的两个用户的最优的特征组合,并将该特征组合输入SVM模型,即可识别出这两个用户账户是否为同一个用户操纵;本发明适用于任何的社交网络平台,模型简单、高效,对于识别马甲账号也有较高的准确率。
-
公开(公告)号:CN112487146B
公开(公告)日:2022-05-31
申请号:CN202011386072.6
申请日:2020-12-02
Applicant: 重庆邮电大学
Abstract: 本发明涉及人工智能领域和自然语言处理领域,尤其涉及一种法律案件争议焦点获取方法、装置以及计算机设备;所述方法包括获取具有争议焦点的法律文本,归纳争议焦点的类别并将其视为标签,制作成法律案件争议焦点数据集;将如何获得争议焦点问题转化为分类问题,类的标签由上一步归纳所得,将原被告陈述内容分别作为输入,使用一种孪生BERT模型,对数据集进行训练得到模型结果;对无争议焦点的文书通过训练好的模型得到最终争议焦点结果。本发明收集、制作法律案件争议焦点数据集;使用一种孪生BERT模型,能够扩大输入长度,突破BERT长度为512的限制;得到更加精准的分类结果。本发明能够得到效果更好的法律案件争议焦点结果。
-
公开(公告)号:CN112487146A
公开(公告)日:2021-03-12
申请号:CN202011386072.6
申请日:2020-12-02
Applicant: 重庆邮电大学
Abstract: 本发明涉及人工智能领域和自然语言处理领域,尤其涉及一种法律案件争议焦点获取方法、装置以及计算机设备;所述方法包括获取具有争议焦点的法律文本,归纳争议焦点的类别并将其视为标签,制作成法律案件争议焦点数据集;将如何获得争议焦点问题转化为分类问题,类的标签由上一步归纳所得,将原被告陈述内容分别作为输入,使用一种孪生BERT模型,对数据集进行训练得到模型结果;对无争议焦点的文书通过训练好的模型得到最终争议焦点结果。本发明收集、制作法律案件争议焦点数据集;使用一种孪生BERT模型,能够扩大输入长度,突破BERT长度为512的限制;得到更加精准的分类结果。本发明能够得到效果更好的法律案件争议焦点结果。
-
公开(公告)号:CN111382366A
公开(公告)日:2020-07-07
申请号:CN202010139426.0
申请日:2020-03-03
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06F16/33 , G06F16/35 , G06Q50/00
Abstract: 本发明涉及自然语言处理、网络安全、社交网络、信息提取领域,尤其涉及一种基于语言和非语言特征的社交网络用户识别方法及装置,方法包括收集社交网络用户账号的评论文本,将不同的用户账号两两组合,得到社交网络马甲识别训练集;基于社交网络马甲识别训练集,从中提取语言和非语言的特征,将语言和非语言特征进行横向拼接;使用SVM模型对数据集进行训练,得到马甲识别模型,利用特征选择技术贪心算法选择最优的特征组合;将提取实时的两个用户的最优的特征组合,并将该特征组合输入SVM模型,即可识别出这两个用户账户是否为同一个用户操纵;本发明适用于任何的社交网络平台,模型简单、高效,对于识别马甲账号也有较高的准确率。
-
-
-