-
公开(公告)号:CN116227542A
公开(公告)日:2023-06-06
申请号:CN202211642306.8
申请日:2022-12-20
Applicant: 重庆邮电大学
IPC: G06N3/045 , G06N3/0475 , G06N3/084 , G06N3/094
Abstract: 本发明涉及一种基于扰动多样性增强的对抗训练方法及系统,属于深度学习安全技术领域。该方法包括:S1:将训练数据输入到模型中,执行前向传播与反向传播,获取模型损失函数对于输入数据的梯度值;S2:基于最大扰动值∈,计算服从均匀分布U(‑∈,∈)的随机噪声;S3:基于得到的梯度值以及随机噪声,生成投影至指定范围[‑,∈]中的对抗性扰动;S4:将对抗性扰动添加到对应的原始图像上,并将其投影至合法像素范围[0,1]中,得到对抗样本;S5:将对抗样本输入到模型中,执行前向传播与反向传播,更新模型参数,完成对抗训练。本发明在运算量大幅减小、训练时间大幅缩短的基础上,实现了与多步迭代方法相近的鲁棒性。