一种基于长短期兴趣的电商平台会话感知推荐预测方法

    公开(公告)号:CN115293812A

    公开(公告)日:2022-11-04

    申请号:CN202210967561.3

    申请日:2022-08-12

    Abstract: 本发明属于互联网应用技术领域,具体涉及一种基于长短期兴趣的电商平台会话感知推荐预测方法,包括获取在线数据,数据包括用户的基本信息、物品的基本信息以及用户行为的会话序列;通过获取的在线数据,提取用户行为和用户偏好,并构建用户长期兴趣集;通过兴趣匹配从用户长期兴趣集中获取用户在当前阶段的短期兴趣;构建预测模型,将用户在一个会话的点击序列,即物品输入,以及用户在当前阶段的短期兴趣作为输入,预测模型输出预测物品并进行推荐;本发明不仅能够有效挖掘用户行为序列中的用户长短期兴趣信息,更精确的表达用户兴趣偏好,同时能够提升电商平台的推荐准确性。

    一种基于图神经网络的恶意软件快速检测方法

    公开(公告)号:CN115344863A

    公开(公告)日:2022-11-15

    申请号:CN202210996905.3

    申请日:2022-08-19

    Abstract: 本发明属于网络与信息安全技术领域,具体涉及一种基于图神经网络的恶意软件快速检测方法,该方法包括:构建恶意软件检测模型,采用不同元结构挖掘软件节点中不同实体中的隐藏信息;捕获节点之间基于高阶内容的相关性,使用注意力机制,对元路径进行语义融合;采用基于元结构相似度匹配的Sim2vec算法从未知软件节点和与之相似的已知软件节点嵌入进行增量聚合,提升检测速度;本发明考虑到不同恶意软件实体的多样性和语义关系复杂性所带来的检测精度不准得问题,采用异质信息网络构建模型,并利用高阶图神经网络挖掘恶意软件的高阶特征信息,再利用相似度算法进行匹配,能够有效的进行恶意软件的快速检测。

    一种基于图结构迁移的跨领域谣言传播控制方法

    公开(公告)号:CN115495671A

    公开(公告)日:2022-12-20

    申请号:CN202211128418.1

    申请日:2022-09-16

    Abstract: 本发明属于网络舆情分析领域,具体涉及一种基于图结构迁移的跨领域谣言传播控制方法,包括:实时获取待传播的数据,并提取待传播数据的相关属性;采用URR2vec算法对相关属性进行处理,得到用户转发行为驱动力;根据用户转发行为驱动力采用训练后的图卷积神经网络计算用户转发行为影响力;根据用户转发行为影响力确定谣言传播趋势,并传播趋势对谣言进行控制;本发明通过对待传播的数据提取谣言话题重要度、谣言话题热度、用户活跃度、用户受情感影响指数以及用户亲密度等的相关特征,通过提取的特征对待传播的数据进行分析,使得预测的谣言传播趋势的准确度更高。

    一种商品转化率预测方法
    4.
    发明公开

    公开(公告)号:CN115439152A

    公开(公告)日:2022-12-06

    申请号:CN202211078033.9

    申请日:2022-09-05

    Abstract: 本发明属于互联网应用技术领域,具体涉及一种商品转化率预测方法,包括:通过电商平台获取原始数据,并根据原始数据计算得到用户商品交互特征;将用户商品交互特征输入多任务商品预测模型对多任务商品预测模型进行训练;获取目标用户和目标商品的属性信息,并计算目标用户商品交互特征,将目标用户商品交互特征输入训练好的多任务商品预测模型预测得到目标用户对目标商品的预测转化率、目标用户对目标商品的预测点击转化率、目标用户对目标商品的预测延迟转化率,利用EM算法得到目标用户对目标商品的最终转化率,本发明能够准确的预测商品的转化率,根据最终转化率精确的向用户推荐商品,提高平台的成交量,节约用户的浏览时间。

Patent Agency Ranking