一种基于数据驱动的汽车三元催化器的故障诊断方法

    公开(公告)号:CN106224067A

    公开(公告)日:2016-12-14

    申请号:CN201610864280.X

    申请日:2016-09-29

    CPC classification number: Y02T10/47 F01N11/00

    Abstract: 本发明涉及一种基于数据驱动的汽车三元催化器的故障诊断方法,属于汽车三元催化器故障诊断技术领域。该方法首先通过转鼓实验平台完成对三元催化器尾气的采集,得到故障尾气数据;然后利用FrFT(分数阶傅里叶变换)将采集的原始尾气信号映射到分数阶域并通过粒子群算法确定最优分数阶p值,完成对尾气信号的初步特征提取,进一步对初步得到的故障特征进行分形分析得到信号的分形维特征,利用KECA(核熵成分分析)对分形维特征数据降维便于可视化聚类;最后通过改进的FCM聚类算法进行聚类分析诊断出故障。本方法可以对汽车三元催化器进行有效地故障诊断,改善了现有的基于OBD诊断技术中模型简化单一、不能有机整合和通用性较差的问题。

    一种基于数据驱动的汽车三元催化器的故障诊断方法

    公开(公告)号:CN106224067B

    公开(公告)日:2018-07-17

    申请号:CN201610864280.X

    申请日:2016-09-29

    CPC classification number: Y02T10/47

    Abstract: 本发明涉及一种基于数据驱动的汽车三元催化器的故障诊断方法,属于汽车三元催化器故障诊断技术领域。该方法首先通过转鼓实验平台完成对三元催化器尾气的采集,得到故障尾气数据;然后利用FrFT(分数阶傅里叶变换)将采集的原始尾气信号映射到分数阶域并通过粒子群算法确定最优分数阶p值,完成对尾气信号的初步特征提取,进一步对初步得到的故障特征进行分形分析得到信号的分形维特征,利用KECA(核熵成分分析)对分形维特征数据降维便于可视化聚类;最后通过改进的FCM聚类算法进行聚类分析诊断出故障。本方法可以对汽车三元催化器进行有效地故障诊断,改善了现有的基于OBD诊断技术中模型简化单一、不能有机整合和通用性较差的问题。

Patent Agency Ranking