-
公开(公告)号:CN114066735B
公开(公告)日:2024-10-15
申请号:CN202111448561.4
申请日:2021-11-30
Applicant: 重庆邮电大学
IPC: G06T3/4053 , G06T7/168 , G06T3/4046 , G06T3/4084 , G06N3/0464 , G06N3/084
Abstract: 本发明属于傅里叶叠层成像技术领域,具体涉及一种基于人工神经网络的最小一乘的稀疏采样傅里叶叠层成像重建方法,该方法包括:采用傅里叶叠层成像设备对图像进行稀疏采样,得到一系列低分辨率的采集图像;建立傅里叶叠层成像正向模型,将采集低分辨率图像顺序输入正向模型,比较人工神经网络仿真生成图像和采集图像最小绝对偏差,求有解约束的最小一乘问题;利用误差反向传播训练和更新人工神经网络权重,得到重建高分辨率的相位恢复图像;本发明采用随机梯度下降优化方法对模型的损失函数进行优化,使得训练后的模型更精确,使得采样稀疏采样数据构建的高分辨率重建图清晰度更高。
-
公开(公告)号:CN114066735A
公开(公告)日:2022-02-18
申请号:CN202111448561.4
申请日:2021-11-30
Applicant: 重庆邮电大学
Abstract: 本发明属于傅里叶叠层成像技术领域,具体涉及一种基于人工神经网络的最小一乘的稀疏采样傅里叶叠层成像重建方法,该方法包括:采用傅里叶叠层成像设备对图像进行稀疏采样,得到一系列低分辨率的采集图像;建立傅里叶叠层成像正向模型,将采集低分辨率图像顺序输入正向模型,比较人工神经网络仿真生成图像和采集图像最小绝对偏差,求有解约束的最小一乘问题;利用误差反向传播训练和更新人工神经网络权重,得到重建高分辨率的相位恢复图像;本发明采用随机梯度下降优化方法对模型的损失函数进行优化,使得训练后的模型更精确,使得采样稀疏采样数据构建的高分辨率重建图清晰度更高。
-
公开(公告)号:CN114386575B
公开(公告)日:2025-03-21
申请号:CN202210013274.9
申请日:2022-01-06
Applicant: 重庆邮电大学
IPC: G06T5/77 , G06T5/60 , G06N3/0464 , G06N3/084 , G06V10/774 , G06V10/42 , G06V10/82 , G06V10/776
Abstract: 本发明属于傅里叶叠层成像技术领域,具体涉及一种应用于稀疏傅里叶叠层成像的无训练卷积神经网络相位恢复方法,包括:获取低分辨率图像,对低分辨率图像进行间隔采样得到低分辨率子图像;将低分辨率子图像进行插值放大和加入随机高斯噪声后输入卷积神经网络模型中,得到图像的幅度和相位信息,根据幅度和相位信息重建低分变率图像;比较重建的低分辨率图像与输入的低分辨率图像的差异,并训练神经网络直到网络收敛,得到高分辨率图像的相位和幅度信息;本发明设计了一类无训练卷积神经网络,在不依赖大量数据的情况下,使用较少的采样图像序列,即可高质量恢复图像相位和幅度信息。
-
公开(公告)号:CN114386575A
公开(公告)日:2022-04-22
申请号:CN202210013274.9
申请日:2022-01-06
Applicant: 重庆邮电大学
IPC: G06N3/04 , G06N3/08 , G06K9/62 , G06V10/774 , G06V10/42 , G06V10/82 , G06V10/776
Abstract: 本发明属于傅里叶叠层成像技术领域,具体涉及一种应用于稀疏傅里叶叠层成像的无训练卷积神经网络相位恢复方法,包括:获取低分辨率图像,对低分辨率图像进行间隔采样得到低分辨率子图像;将低分辨率子图像进行插值放大和加入随机高斯噪声后输入卷积神经网络模型中,得到图像的幅度和相位信息,根据幅度和相位信息重建低分变率图像;比较重建的低分辨率图像与输入的低分辨率图像的差异,并训练神经网络直到网络收敛,得到高分辨率图像的相位和幅度信息;本发明设计了一类无训练卷积神经网络,在不依赖大量数据的情况下,使用较少的采样图像序列,即可高质量恢复图像相位和幅度信息。
-
-
-