基于声阵列信号高频失真干扰抑制的声源定位方法及系统

    公开(公告)号:CN118837822A

    公开(公告)日:2024-10-25

    申请号:CN202410798356.8

    申请日:2024-06-20

    Applicant: 重庆大学

    Abstract: 基于声阵列信号高频失真干扰抑制的声源定位方法及系统,包括,步骤1:采集频域的宽带声阵列信号,以及宽带声阵列信号的特征频率;步骤2:基于设定的分割窗宽度,计算窄带声阵列信号在每个通道上的真实特征频率;步骤3:计算窄带声阵列信号的幅值特征向量和窄带声阵列信号的权重向量;步骤4:计算真实特征频率极差,判断真实特征频率极差值是否小于设定阈值,若小于,则将步骤3计算的权重向量的值作为自适应权重向量的值,转入步骤6;否则转入步骤5;步骤5:计算每个窄带声阵列信号的自适应权重向量;步骤6:采用空间谱估计算法估计声源位置。本发明以较小的计算量达到抑制高频分量失真干扰、提升定位精度的效果。

    经表面修饰的四氧化三铁纳米筛及其制备方法和在提升天然酯绝缘油击穿强度上的应用

    公开(公告)号:CN116313230B

    公开(公告)日:2024-06-18

    申请号:CN202310177058.2

    申请日:2023-02-28

    Applicant: 重庆大学

    Abstract: 本发明公开了一种经表面修饰的四氧化三铁纳米筛及其制备方法和在提升天然酯绝缘油击穿强度上的应用,涉及绝缘材料技术领域。所述制备方法如下:1)将硝酸铁、碳酸钠、氨水和乙二醇混合,反应得到反应混合物;2)从步骤1)得到的反应混合物中分离得到Fe3O4纳米筛前驱物;3)将步骤2)得到的Fe3O4纳米筛前驱物进行煅烧,得到Fe3O4纳米筛;4)使用油酸对Fe3O4纳米筛进行改性,得到经表面修饰的Fe3O4纳米筛。经表面修饰的Fe3O4纳米筛具有极高的比表面积,表面效应更为显著,对绝缘油中电离产生的电子具有更强的捕获能力,阻碍电子迁移,延缓流注放电的发展速度,从而更为有效的提升绝缘油的击穿电压。

    一种氟化非晶碳薄膜及其制备方法和应用

    公开(公告)号:CN112063984B

    公开(公告)日:2023-07-28

    申请号:CN202010897689.8

    申请日:2020-08-31

    Applicant: 重庆大学

    Abstract: 本发明公开了一种氟化非晶碳薄膜及其制备方法和应用,属于薄膜材料技术领域。氟化非晶碳薄膜由基底层和沉积在其表面的氟化非晶碳薄膜组成。制备包括:将基底层清洗,干燥;打磨聚四氟乙烯靶和石墨靶,并清洗;将预处理后的基底层和靶材放入镀膜室,抽本底真空,通入惰性气体进行预溅射;分别用射频和直流溅射,在基底层表面共溅射,得到氟化非晶碳薄膜。本发明的氟化非晶碳薄膜,通过化学组分和微结构的变化调控薄膜的微观形貌和带隙宽度,从而影响内二次电子出射时的散射强度,以降低薄膜的二次电子发射系数,且具有制备方法简单、实用性好可重复性强、薄膜成分高度可控等优点,在高压绝缘材料领域具有潜在的应用前景。

    经表面修饰的四氧化三铁纳米筛及其制备方法和在提升天然酯绝缘油击穿强度上的应用

    公开(公告)号:CN116313230A

    公开(公告)日:2023-06-23

    申请号:CN202310177058.2

    申请日:2023-02-28

    Applicant: 重庆大学

    Abstract: 本发明公开了一种经表面修饰的四氧化三铁纳米筛及其制备方法和在提升天然酯绝缘油击穿强度上的应用,涉及绝缘材料技术领域。所述制备方法如下:1)将硝酸铁、碳酸钠、氨水和乙二醇混合,反应得到反应混合物;2)从步骤1)得到的反应混合物中分离得到Fe3O4纳米筛前驱物;3)将步骤2)得到的Fe3O4纳米筛前驱物进行煅烧,得到Fe3O4纳米筛;4)使用油酸对Fe3O4纳米筛进行改性,得到经表面修饰的Fe3O4纳米筛。经表面修饰的Fe3O4纳米筛具有极高的比表面积,表面效应更为显著,对绝缘油中电离产生的电子具有更强的捕获能力,阻碍电子迁移,延缓流注放电的发展速度,从而更为有效的提升绝缘油的击穿电压。

    一种变电站多台并联变压器负荷预测方法

    公开(公告)号:CN111708987B

    公开(公告)日:2023-04-07

    申请号:CN202010549550.4

    申请日:2020-06-16

    Applicant: 重庆大学

    Abstract: 一种变电站多台并联变压器负荷预测方法,包括以下步骤:步骤1,获取设定时间段内所述变电站的历史数据,包括该设定时间段内变电站负荷数据,每台变压器的负荷数据,变电站运行方式数据;步骤2,使用变电站的历史数据计算变电站以运行方式Cj运行时变压器Ti在t时刻的负载分配系数Ft(Ti,Cj);步骤3,以步骤2获得的负载分配系数Ft(Ti,Cj),结合变电站的负荷Ls(t),使用非线性回归函数G(Ls(t),Ti,Cj)量化负载分配系数Ft(Ti,Cj)与变电站的负荷Ls(t)的非线性映射关系;步骤4,以步骤3获得的非线性回归函数G(Ls(t),Ti,Cj),结合变电站的负荷Ls(t),对t时刻第i台变压器的负荷Li(t)进行预测。在提升变压器负荷预测结果准确性的前提下极大减小了负荷预测建模的工作量,实现了精度和效率两项性能的双重提升。

Patent Agency Ranking