一种基于双变分级联自编码器的信息流行度预测方法

    公开(公告)号:CN117610717B

    公开(公告)日:2024-08-02

    申请号:CN202311502493.4

    申请日:2023-11-13

    Applicant: 重庆大学

    Abstract: 本发明提出一种基于双变分级联自编码器的信息流行度预测方法,包括,获取信息扩散过程中的全局交互图和级联图;构建信息扩散模型,将全局交互图和级联图输入信息扩散模型,其中基础信息扩散模型包括变分图自编码器和变分时序自编码器;通过信息扩散模型输出信息的流行度预测结果。本发明提出的方法,基于图神经网络技术来拟合传播拓扑结构、推理传播过程,捕获影响信息传播的关键因素并构建统一的信息扩散预测框架,从而在信息流行度预测任务上得到更加准确的预测结果。

    一种基于双视图增强Transformer的飞行数据异常检测方法及系统

    公开(公告)号:CN119848736A

    公开(公告)日:2025-04-18

    申请号:CN202510049313.4

    申请日:2025-01-13

    Applicant: 重庆大学

    Abstract: 本发明涉及一种基于双视图增强Transformer的飞行数据异常检测方法及系统,属于航空安全技术领域。本发明将飞行安全异常检测的任务扩展到传统的超限事件之外,针对飞行过程中细微且往往未被检测到的异常;根据QAR数据是时间序列数据的一种典型形式,将飞行安全问题重新表述为时间序列分析中的异常检测任务;此外,为解决飞行安全研究中过度依赖专家标记数据的挑战,设计了一种专门为QAR数据设计的无监督异常检测模型。最后针对QAR数据的特征稀疏特点,设计了基于重构的时间序列异常检测模型架构。本发明能够及时识别偏离正常飞行模式的情况,为航空公司提供预警信息,并有效辅助专家分析异常飞行行为,具有广阔的应用前景。

    一种基于双变分级联自编码器的信息流行度预测方法

    公开(公告)号:CN117610717A

    公开(公告)日:2024-02-27

    申请号:CN202311502493.4

    申请日:2023-11-13

    Applicant: 重庆大学

    Abstract: 本发明提出一种基于双变分级联自编码器的信息流行度预测方法,包括,获取信息扩散过程中的全局交互图和级联图;构建信息扩散模型,将全局交互图和级联图输入信息扩散模型,其中基础信息扩散模型包括变分图自编码器和变分时序自编码器;通过信息扩散模型输出信息的流行度预测结果。本发明提出的方法,基于图神经网络技术来拟合传播拓扑结构、推理传播过程,捕获影响信息传播的关键因素并构建统一的信息扩散预测框架,从而在信息流行度预测任务上得到更加准确的预测结果。

Patent Agency Ranking