-
公开(公告)号:CN113800555B
公开(公告)日:2023-05-16
申请号:CN202111116673.X
申请日:2021-09-23
Applicant: 重庆大学
Abstract: 本发明属于吸波材料技术领域,具体涉及新型一硫化钛纳米材料及其复合材料的制备与吸波用途。所述一硫化钛为分散的微米颗粒形式,微米颗粒是由二维纳米片堆叠而成的块体。本发明公开了一种新型的TiS纳米材料,该TiS纳米材料是由二维纳米片堆叠而成的块体,因此其具有更利于吸波效果的片状结构。此外,实验结果证明,该TiS纳米材料在40wt%掺量下,具有最优异的吸波性能,其最小反射损耗可以达到‑47.4dB,有效吸收带宽为5.9GHz,吸收峰值频率为6.8GHz,结果优于目前的二维本体材料。该TiS纳米材料吸波性能优异的原因之一可能是其中的TiS的片层状的微观形貌,使得电磁波折射损耗。
-
公开(公告)号:CN114538807B
公开(公告)日:2022-09-30
申请号:CN202210220061.3
申请日:2022-03-08
Applicant: 重庆大学
Inventor: 张育新 , 杨平安 , 董必钦 , 蔡睿 , 李凯霖 , 刘晓英 , 王大双 , 饶劲松 , 封丽 , 易双 , 张臣智 , 杜智岚 , 戴兴健 , 郑伟 , 包志豪 , 平托 , 白晶莹 , 丛大龙 , 刘召辉 , 姚克欣 , 孙庆
Abstract: 本发明属于吸波材料技术领域,具体涉及一种锰尾矿渣基免烧砖及其制备方法和用途。所述免烧砖包含:锰矿渣、钙质物料、水泥、粉煤灰、砂子。本发明得益于低品位锰尾矿渣中具有优异吸波性能的Fe2O3和SiO2等成分,以及低品位锰矿渣与钙质物料混合煅烧产生的FeSiAl系合金粉、镁锰铁氧体等,能够有效利用多种损耗机制对电磁波进行衰减,获得优异的吸波效果。结果显示,低品位锰尾矿渣填充质量分数为60%的免烧砖,在频率为15.04GHz下,最小反射损耗为‑22.06dB,有效吸收带宽达到4.16GHz(13.84‑18GHz),覆盖了大部分的Ku波段。
-
公开(公告)号:CN114538807A
公开(公告)日:2022-05-27
申请号:CN202210220061.3
申请日:2022-03-08
Applicant: 重庆大学
Inventor: 张育新 , 杨平安 , 董必钦 , 蔡睿 , 李凯霖 , 刘晓英 , 王大双 , 饶劲松 , 封丽 , 易双 , 张臣智 , 杜智岚 , 戴兴健 , 郑伟 , 包志豪 , 平托 , 白晶莹 , 丛大龙 , 刘召辉 , 姚克欣 , 孙庆
Abstract: 本发明属于吸波材料技术领域,具体涉及一种锰尾矿渣基免烧砖及其制备方法和用途。所述免烧砖包含:锰矿渣、钙质物料、水泥、粉煤灰、砂子。本发明得益于低品位锰尾矿渣中具有优异吸波性能的Fe2O3和SiO2等成分,以及低品位锰矿渣与钙质物料混合煅烧产生的FeSiAl系合金粉、镁锰铁氧体等,能够有效利用多种损耗机制对电磁波进行衰减,获得优异的吸波效果。结果显示,低品位锰尾矿渣填充质量分数为60%的免烧砖,在频率为15.04GHz下,最小反射损耗为‑22.06dB,有效吸收带宽达到4.16GHz(13.84‑18GHz),覆盖了大部分的Ku波段。
-
公开(公告)号:CN107540023B
公开(公告)日:2019-04-26
申请号:CN201711033526.X
申请日:2017-10-30
Applicant: 重庆大学
IPC: C01G45/02
Abstract: 本发明提供了一种超长二氧化锰纳米线材料的制备方法,包括:A)将高锰酸钾水溶液进行真空预处理;B)将所述真空预处理后的溶液进行水热反应,得到超长二氧化锰纳米线材料。本发明在制备超长二氧化锰纳米线材料中,采用了纳米自组装技术,并首次引入了真空预处理技术。真空预处理技术可以控制二氧化锰形成纳米核颗粒的大小,进而控制二氧化锰纳米线的形貌。然后,在无模板剂的条件下,通过一步水热反应制备出一维α‑MnO2纳米线。采用上述制备方法制得的一维α‑MnO2纳米线结构稳定、纳米线分布均匀,形貌一致,尺寸可控,单根纳米线长超过了10μm,并且电化学性能较优。
-
公开(公告)号:CN108666145A
公开(公告)日:2018-10-16
申请号:CN201810419336.X
申请日:2018-05-04
Applicant: 重庆大学
Abstract: 本发明提供了一种层状双金属氢氧化物@硅藻土复合结构材料的制备方法,包括以下步骤:A)将镍盐溶液、金属盐溶液、尿素和纯化后的硅藻土混合,得到混合物,所述金属盐选自钴盐、铝盐和锰盐中的一种或多种;B)在密闭条件下,所述混合物进行水热反应,得到层状双金属氢氧化物@硅藻土复合结构材料。本发明利用纳米自组装技术,将硅藻土经过提纯后,在无模板剂条件下,一步水热反应制备得到LDH@硅藻土复合结构材料。该材料结构稳定、纳米片分布均匀,形貌一致,尺寸可控。并具有良好的电化学性能以及吸附性能。
-
公开(公告)号:CN115613023A
公开(公告)日:2023-01-17
申请号:CN202211242005.6
申请日:2022-10-11
Applicant: 重庆大学
IPC: C23C22/60
Abstract: 本发明涉及一种同时提高镁合金耐蚀和耐磨性能的方法,属于表面处理技术领域。所述方法包括以下步骤:以镁合金为原料,采用水热法,通过调控前驱体的摩尔比、pH、反应温度和时间,在其表面原位生长LDH薄膜;经在带相反电荷的Mo2CTx分散液中交替沉积,得到所述镁合金表面LDH@Mo2CTx复合膜。本发明公开了制备复合膜的具体步骤,并进一步公开了各步骤所用前驱体的摩尔比、pH、处理时间及温度。本发明提供的复合膜制备工艺简单、绿色环保、成本低廉,通过层层组装的方法,为LDH@Mo2CTx复合膜的防腐耐磨应用拓展了新的前景。
-
公开(公告)号:CN115072770A
公开(公告)日:2022-09-20
申请号:CN202210665967.6
申请日:2022-06-13
Applicant: 重庆大学
IPC: C01G23/00
Abstract: 本发明属于纳米材料技术领域,具体涉及一硫化钛纳米材料及其制备方法。所述制备方法包括以下步骤:步骤(1)、采用选区激光熔化技术制备杂相一硫化钛纳米材料:以摩尔比为1:1:0.1:0.2的Ti粉、S粉、Si粉、Al粉组成的混合粉为原料,在激光线能量密度为0.8~1.0J/mm和选用栅格扫描方式的条件下,采用选区激光熔化技术在坩埚装置中对所述原料进行处理,制备出杂相一硫化钛纳米材料;所述混合粉中:Ti粉和S粉的摩尔相同,均为0.2摩尔;Si粉为0.02摩尔;Al粉为0.04摩尔。本发明首次通过采用选区激光熔化方法合成出杂相一硫化钛粉体。通过球磨方式,可以去除含铝杂相和含硅杂相。此外,对材料进一步除硫,可成功获得纳米级的纯相一硫化钛粉体材料。
-
公开(公告)号:CN114605193A
公开(公告)日:2022-06-10
申请号:CN202210293125.2
申请日:2022-03-23
Applicant: 重庆大学
Abstract: 本发明属于农业肥料技术领域,具体涉及一种复合液态硅肥的制备方法和用途。所述复合液态硅肥包含:硅藻土处理液40wt%、硅藻菌液30wt%、有机液肥30wt%。本发明设计出的复合液态硅肥发挥了单纯用硅藻土制造硅肥所达不到的效果。采用活性硅藻复合,不仅改善硅藻土的硅藻蛋白石表面原有的羟基等活性位点以及独特的生物微孔性能随沉积年限逐渐下降的问题,还能与水稻等作物形成共生的小型生态体系,促进生态可持续发展。
-
公开(公告)号:CN114477272A
公开(公告)日:2022-05-13
申请号:CN202210144120.3
申请日:2022-02-17
Applicant: 重庆大学
IPC: C01G23/00 , C23C4/04 , C23C4/134 , C10M103/06
Abstract: 本发明属于固体润滑材料技术领域,具体涉及一硫化钛颗粒、其复合材料及其制备、用途与涂层材料。所述一硫化钛颗粒是由二维纳米片堆叠而成的层状结构。本发明公开了一种新型TiS颗粒,实验结果证明,本发明的一硫化钛用作耐高温涂层具有以下预想不到的优异性能:摩擦系数随着温度的升高呈现下降趋势(这明显不同于传统材料,温度升高,摩擦系数降低的趋势);且在1000摄氏度下实现最低0.08的摩擦系数。本发明还公开了一种ZrO2@TiS复合材料。相比纯一硫化钛,ZrO2@TiS复合材料涂层的润滑性能相对降低,但制备成本的降低为ZrO2@TiS纳米复合材料在不同领域的作用提供了保障。
-
公开(公告)号:CN106955716B
公开(公告)日:2019-10-18
申请号:CN201710196874.2
申请日:2017-03-29
Applicant: 重庆大学
IPC: B01J23/889 , B01J35/10 , H01G11/30 , H01G11/46
Abstract: 本发明提供了一种磁性复合硅藻土材料及其制备方法,所述磁性复合硅藻土材料包括活性组分和载体;所述活性组分为纳米MnO2和纳米Fe2O3;所述载体为硅藻土;所述硅藻土的壳体尺寸为10μm~50μm,比表面积为1m2/g~4m2/g。与现有技术相比,本发明提供的磁性复合硅藻土材料以硅藻土为载体,成功负载处于共生状态的纳米铁锰氧化物,且所述纳米铁锰氧化物的负载效果理想,在保证产品结构稳定的基础上,纳米颗粒尺寸均匀可控、形貌一致;并且,得到的磁性复合硅藻土材料的各组分实现协同作用,使产品同时具有较好的电化学性能和水处理性能。
-
-
-
-
-
-
-
-
-