-
公开(公告)号:CN106203263A
公开(公告)日:2016-12-07
申请号:CN201610486249.7
申请日:2016-06-27
Applicant: 辽宁工程技术大学
IPC: G06K9/00
CPC classification number: G06K9/00295
Abstract: 针对传统脸型分类算法特征点定位不准和过度依赖轮廓曲线的问题,提出一种人脸轮廓圆形邻域局部特征表达和脸型分类模型。首先,初步定位脸型轮廓特征点,然后在特征点周围选取三重八连通圆形邻域,通过计算一级邻域、拓展邻域与中心区域间的纹理变化,生成二进制编码序列,构造脸型局部特征向量;最后设计OVO-RBF-SVM多分类模型,实现脸型分类。本文方法在CAS-PEAL人脸库上进行脸型类型判别,获得了94.28%的准确率;在相同情况下,分别与基于主动形状模型和基于下颌曲线模型的脸型类型判别方法进行对比,准确率分别提高了6.64%和6.58%。本文所研究的方法在一定程度上解决了特征点定位相对不准确导致误差增加的问题。尽可能多利用图片原始信息,保证轮廓特征提取的准确率,具有较强的鲁棒性。通过实验证明了,本文方法适用于脸型分类。