-
公开(公告)号:CN111239685A
公开(公告)日:2020-06-05
申请号:CN202010021009.6
申请日:2020-01-09
Applicant: 辽宁工程技术大学
Abstract: 本发明提供一种基于均匀设计和自组织特征映射神经网络的声源定位方法,涉及声源定位技术领域。首先确定声源所在三维空间,并将其划分为n个立体网格;选择声音信号的m个特征作为均匀设计法中的实验因素;从n个网格中选取均匀散布的k个网格做成均匀设计表;建立自组织特征映射神经网络,将均匀设计表中的数据进行归一化处理后作为该网络的输入;对自组织特征映射神经网络输入层与输出层的神经元连接权值赋值,并确定权值调整域,对权值进行更新;对自组织特征映射神经网络的学习率赋初始值,并设定学习率随训练次数增加逐渐减小;采用欧式距离法比较输入量与竞争层中的神经元对应的权值的相似性,获得声源稀疏位置,最终实现声源的精确定位。
-
公开(公告)号:CN114139060A
公开(公告)日:2022-03-04
申请号:CN202111496127.3
申请日:2021-12-09
Applicant: 辽宁工程技术大学
IPC: G06F16/9535 , G06N20/00 , G06Q30/08
Abstract: 本发明公开了一种基于拍卖系统的多关系推荐方法,步骤为:使用用户和物品的属性进行建模;依据投标、购买和最终成交价格,构建不同的评分函数;预测购买、投标的可能性和用户将购买目标项目的预期销售价格;拍卖系统中用户和物品的特殊属性与推荐系统相结合,向用户提供一个性化推荐项目列表,并在项目之间全面分发投标。本发明利用用户和项目属性以及通常存在于大多数拍卖设置中的辅助关系信息来解决拍卖系统中唯一项目推荐问题,辅助关系信息能显著提高用户的模型性能,最后能够向用户提供个性化推荐项目列表,并在项目之间全面分发投标,并在促进这些重要但被忽视的在线拍卖的增长方面显示出了有前景的结果。
-
公开(公告)号:CN111239685B
公开(公告)日:2021-08-24
申请号:CN202010021009.6
申请日:2020-01-09
Applicant: 辽宁工程技术大学
Abstract: 本发明提供一种基于均匀设计和自组织特征映射神经网络的声源定位方法,涉及声源定位技术领域。首先确定声源所在三维空间,并将其划分为n个立体网格;选择声音信号的m个特征作为均匀设计法中的实验因素;从n个网格中选取均匀散布的k个网格做成均匀设计表;建立自组织特征映射神经网络,将均匀设计表中的数据进行归一化处理后作为该网络的输入;对自组织特征映射神经网络输入层与输出层的神经元连接权值赋值,并确定权值调整域,对权值进行更新;对自组织特征映射神经网络的学习率赋初始值,并设定学习率随训练次数增加逐渐减小;采用欧式距离法比较输入量与竞争层中的神经元对应的权值的相似性,获得声源稀疏位置,最终实现声源的精确定位。
-
-