-
公开(公告)号:CN111241419B
公开(公告)日:2023-11-24
申请号:CN202010022487.9
申请日:2020-01-09
Applicant: 辽宁工程技术大学
IPC: G06F16/9536 , G06N3/084 , G06Q50/00
Abstract: 本发明公开了一种基于用户关系嵌入模型的下一个兴趣点推荐方法,步骤为:根据朋友关系和用户历史签到记录数据分别建立朋友关系表和偏好相似关系表,通过这两个表建立用户关系图;根据建立的用户关系图采用随机游走算法得到用户关系序列,用户关系序列经过Word2Vec词嵌入模型得到每个用户的低纬嵌入向量;利用用户的低纬嵌入向量对神经网络的用户嵌入层参数进行初始化,使用门控循环单元给出下一个兴趣点推荐。本发明的基于用户关系嵌入模型的下一个兴趣点推荐方法将偏好相似关系引入到推荐模型中,增强了用户关系的表示,解决了现有方法只考虑用户朋友关系的片面性导致推荐
-
公开(公告)号:CN111241419A
公开(公告)日:2020-06-05
申请号:CN202010022487.9
申请日:2020-01-09
Applicant: 辽宁工程技术大学
IPC: G06F16/9536 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种基于用户关系嵌入模型的下一个兴趣点推荐方法,步骤为:根据朋友关系和用户历史签到记录数据分别建立朋友关系表和偏好相似关系表,通过这两个表建立用户关系图;根据建立的用户关系图采用随机游走算法得到用户关系序列,用户关系序列经过Word2Vec词嵌入模型得到每个用户的低纬嵌入向量;利用用户的低纬嵌入向量对神经网络的用户嵌入层参数进行初始化,使用门控循环单元给出下一个兴趣点推荐。本发明的基于用户关系嵌入模型的下一个兴趣点推荐方法将偏好相似关系引入到推荐模型中,增强了用户关系的表示,解决了现有方法只考虑用户朋友关系的片面性导致推荐模型的局限性问题,有效提高了推荐模型的准确率。
-