一种融合空间密度分布的轴承故障诊断方法

    公开(公告)号:CN113469107B

    公开(公告)日:2024-06-04

    申请号:CN202110804528.4

    申请日:2021-07-16

    Applicant: 辽宁大学

    Abstract: 一种融合空间密度分布的轴承故障诊断方法,步骤如下:(1)信号采样;(2)降噪处理;(3)特征选择;(4)轴承故障诊断。本发明设计并实现一种融合空间密度分布的轴承故障诊断方法。为提高不完整轴承数据的故障诊断准确率,将密度引入到模糊C均值的目标函数中;然后采用小波阈值降噪算法和时域特征处理轴承数据;最后将轴承数据输入改进的模糊C均值算法中进行聚类。在四种缺失率的情况下与三种方法进行对比实验,验证本发明方法有更高的诊断准确率。

    一种特征对齐域对抗神经网络的轴承故障诊断方法

    公开(公告)号:CN117475191A

    公开(公告)日:2024-01-30

    申请号:CN202310791257.2

    申请日:2023-06-30

    Applicant: 辽宁大学

    Abstract: 一种特征对齐域对抗神经网络故障诊断方法,步骤如下:(1)信号采集;(2)数据扩充;(3)特征学习;(4)故障分类。改进特征对齐生成对抗网络构建真实数据与生成数据的最大均值差异机制,以卷积模块代替全连接模块,以实现对不平衡数据的扩充,可以满足域对抗神经网络DANN中源域与目标域数量平衡需求。DANN领域判别器对齐域间特征分布的同时会弱化特征提取器提取到的域内分类特征,为了使DANN标签分类器分类更准确,建立多尺度注意力机制筛选出重要故障相关信息,提取域判别不变下分类相关特征,并构建熵最小标签分类器,提高模型泛化能力。改进的域对抗神经网络可以更好的识别目标域样本的故障类别,完成滚动轴承不平衡样本下的故障识别。

    一种双向LSTM融合多尺度卷积的轴承亚健康识别算法

    公开(公告)号:CN115034268A

    公开(公告)日:2022-09-09

    申请号:CN202210687431.4

    申请日:2022-06-17

    Applicant: 辽宁大学

    Abstract: 一种双向LSTM融合多尺度卷积的轴承亚健康识别算法,步骤如下:(1)信号采样;(2)降噪处理;(3)特征提取;(4)轴承故障诊断。本发明设计并实现一种双向LSTM融合多尺度卷积的轴承故障诊断方法。为最大限度保留原始信号中的重要信息,利用小波包软阈值去噪方法处理轴承数据;然后采用多尺度卷积提取多维空间相关性信息;同时使用双向改进长短期记忆网络提取数据中时序相关性信息,且改进后单元结构只具有一个“门”结构,有效减少参数量;最后进行滚动轴承的故障分类。在同一实验条件下与四种方法进行对比实验,验证本发明方法有更高的诊断准确率。

    一种融合空间密度分布的轴承故障诊断方法

    公开(公告)号:CN113469107A

    公开(公告)日:2021-10-01

    申请号:CN202110804528.4

    申请日:2021-07-16

    Applicant: 辽宁大学

    Abstract: 一种融合空间密度分布的轴承故障诊断方法,步骤如下:(1)信号采样;(2)降噪处理;(3)特征选择;(4)轴承故障诊断。本发明设计并实现一种融合空间密度分布的轴承故障诊断方法。为提高不完整轴承数据的故障诊断准确率,将密度引入到模糊C均值的目标函数中;然后采用小波阈值降噪算法和时域特征处理轴承数据;最后将轴承数据输入改进的模糊C均值算法中进行聚类。在四种缺失率的情况下与三种方法进行对比实验,验证本发明方法有更高的诊断准确率。

Patent Agency Ranking