一种基于图像重构技术的星载微波散射计方位向分辨率增强方法

    公开(公告)号:CN119780857A

    公开(公告)日:2025-04-08

    申请号:CN202411952830.4

    申请日:2024-12-27

    Abstract: 本发明公开了一种基于图像重构技术的星载微波散射计方位向分辨率增强方法,根据距离向分辨率需求将距离向波束足迹划分为若干分辨单元,通过定标将分辨单元功率转换为后向散射系数,同时基于观测几何信息通过地理定位确定后向散射系数对应的观测位置;沿着天线扫描时各距离向分辨单元对应波束中心形成的地面足迹轨迹分段连续划分一维均匀网格,基于距离向高分辨率后向散射系数和对应的空间响应函数在网格区域内投影信息应用散射计图像重构算法实现网格内后向散射系数重构。本发明通过克服现有处理方法的局限性,能够实时、可靠和高效地实现星载微波散射计方位向分辨率提升,是一种实用的星载微波散射计数据处理方法。

    一种超高分辨率星载SAR的分段变重频时序设计方法

    公开(公告)号:CN110208800B

    公开(公告)日:2021-06-11

    申请号:CN201910549798.8

    申请日:2019-06-24

    Abstract: 一种超高分辨率星载SAR的分段变重频时序设计方法,首先根据场景回波距离徙动数据确定场景回波的瞬时最大斜距跨度,设计方位向各段斜距总跨度应满足的范围;然后对回波接收期间的方位向进行分段;接着设计方位向各段回波接收窗的长度以及起始与终止采样时刻;然后搜索能够匹配回波接收窗时间范围的工作重频;最后仿真验证分段变重频设计结果是否保证回波能够有效接收,如果是,则设计结束,输出方位向各段内与工作时序相关的系统参数,否则重新进行方位向分段,直到分段变重频设计结果保证整个场景的回波能够被有效接收。本发明通过调整脉冲发射重频和回波接收窗接收区间,保证工作时序能够适应场景回波的超大距离徙动特性,确保了回波的完整接收。

    一种星载微波散射计海面回波信号的检测方法

    公开(公告)号:CN103675786A

    公开(公告)日:2014-03-26

    申请号:CN201310635167.0

    申请日:2013-11-29

    CPC classification number: G01S7/354

    Abstract: 本发明一种星载微波散射计海面回波信号的检测方法,针对星载微波散射计回波信号能量小,信噪比差,需要采用特殊的信号检测方法来得到高精度的海面回波信号功率值问题,提出了一种星载微波散射计海面回波信号的检测方法,步骤如下:将接收机采集的回波信号和内定标信号,采用不同带宽的数字滤波器分成两路,带宽小的一路定义为信号通道,带宽大的一路定义为噪声通道;测量分别获取信号通道和噪声通道接收到的回波信号与噪声的能量和;测量获取信号通道和噪声通道接收到的内定标信号得到噪声通道与信号通道的增益比为β;将接收机输入端接匹配负载进行接收机噪声测量得到噪声能量比γ;最后计算获得信号通道接收到的回波信号能量Es。

    一种星载微波辐射计天线误差校正方法

    公开(公告)号:CN109212496B

    公开(公告)日:2021-02-09

    申请号:CN201811123292.2

    申请日:2018-09-26

    Abstract: 一种星载微波辐射计天线误差校正方法,属于微波遥感领域。本发明方法提供了一种星载微波辐射计天线误差校正方法,能够校正有限的天线波束效率引入的定标误差和地球亮温观测误差;通过在卫星轨道坐标系下将空间区域划分为地球区域和冷空区域两部分,在考虑卫星姿态因素影响的情况下,利用旋转矩阵法得到卫星轨道坐标系下空间任意点在天线坐标系下坐标,然后分别在地球区域和冷空区域进行积分得到对应于地球观测和冷空观测的天线波束效率因子,分别对地球观测亮温和冷空定标亮温进行修正,提高了仪器亮温测量精度。

    大斜视成像模式下的星载SAR系统性能参数计算方法

    公开(公告)号:CN112213699A

    公开(公告)日:2021-01-12

    申请号:CN202010718023.1

    申请日:2020-07-23

    Abstract: 大斜视成像模式下的星载SAR系统性能参数计算方法,包括如下步骤:S1、确定评估系统性能指标时的选定目标所在地表弧段;S2、确定参考目标的坐标,然后获得参考目标斜距矢量和波束中心的夹角;S3、依次确定参考目标处的星载SAR天线增益、单次脉冲下的参考目标回波能量、参考目标的第m阶距离模糊能量;S4、确定大斜视观测模式下的星载SAR的等效后向噪声系数;根据单次脉冲下的参考目标回波能量、距离脉冲压缩改善因子、方位脉冲压缩改善因子、参考目标的距离模糊能量、参考目标的第m阶距离模糊目标的方位脉冲压缩改善因子,确定大斜视观测模式下的星载SAR的距离模糊比。

    一种宽幅全极化星载SAR的极化回波分离方法

    公开(公告)号:CN103885052B

    公开(公告)日:2016-05-04

    申请号:CN201410114271.X

    申请日:2014-03-25

    Abstract: 一种宽幅全极化星载SAR的极化回波分离方法,宽幅全极化星载SAR是指在一个脉冲重复间隔内依次发射H与V极化脉冲,而后利用双极化通道接收回波,从而获得四种极化分量的新系统。这一新型全极化SAR可不增加系统重频,因此能够获得更宽的测绘带。然而,为获得这一性能提升,就必须首先将不同极化脉冲的回波分离开。本方法在传统线性约束最小方差(LCMV)算法的基础之上进行改进:对传统算法进行拆分,并在拆分开的两步骤间引入了FIR滤波,再对第二步做相应的改进调整。根据本方法来实现极化回波分离,一方面能够使得不同极化回波的分离隔离度满足应用需求,另一方面也无需过度增加星上运算量,降低了工程实现难度。

    一种星载微波散射计外定标方法

    公开(公告)号:CN103675774B

    公开(公告)日:2015-09-23

    申请号:CN201310638139.4

    申请日:2013-11-29

    Abstract: 本发明公开了一种星载微波散射计外定标方法,针对星载微波散射计需要大散射截面积定标目标问题,步骤如下:1、根据卫星的轨道参数计算卫星的过顶时间及有源定标器的天线指向,并将有源定标的天线指向调整到指定位置;2卫星到达前,对有源定标进行自校准得到转发通道及接收通道的增益;3、利用转发通道的增益计算后向散射系数;4、星载微波散射计计算有源定标器的后向散射系数;5、通过步骤(3)和(4)计算的后向散射系数得到最终的修正值。本发明实现了大散射截面(能达到100dBm2)、高精度的有源定标器。

    基于去斜处理的高分辨率SAR变重频均匀化重采样方法

    公开(公告)号:CN111665506B

    公开(公告)日:2022-07-05

    申请号:CN202010574643.2

    申请日:2020-06-22

    Abstract: 一种基于去斜处理的高分辨率SAR变重频均匀化重采样方法,基于大转角波束旋转扫描回波数据的多普勒模糊特性和分段变重频分段均匀采样的特性,提出对各均匀采样段数据做波束中心旋转多普勒调频率去斜处理,再在距离频域进行带内多普勒变化校正,得到满足耐奎斯特采样定律的基带均匀采样数据段,然后采用sinc插值算法将均匀采样段数据插值到全数据均匀化采样时间上,来完成均匀化重采样处理。本发明方法用于大转角星载高分辨率分段变重频聚束模式、滑动聚束模式、TOPSAR模式和Mosaic模式,具有效率高、精度高、稳健且实用性强的特点。

    基于去斜处理的高分辨率SAR变重频均匀化重采样方法

    公开(公告)号:CN111665506A

    公开(公告)日:2020-09-15

    申请号:CN202010574643.2

    申请日:2020-06-22

    Abstract: 一种基于去斜处理的高分辨率SAR变重频均匀化重采样方法,基于大转角波束旋转扫描回波数据的多普勒模糊特性和分段变重频分段均匀采样的特性,提出对各均匀采样段数据做波束中心旋转多普勒调频率去斜处理,再在距离频域进行带内多普勒变化校正,得到满足耐奎斯特采样定律的基带均匀采样数据段,然后采用sinc插值算法将均匀采样段数据插值到全数据均匀化采样时间上,来完成均匀化重采样处理。本发明方法用于大转角星载高分辨率分段变重频聚束模式、滑动聚束模式、TOPSAR模式和Mosaic模式,具有效率高、精度高、稳健且实用性强的特点。

    一种高分宽幅星载马赛克SAR成像处理方法及系统

    公开(公告)号:CN110208798A

    公开(公告)日:2019-09-06

    申请号:CN201910447782.6

    申请日:2019-05-27

    Abstract: 本发明公开了一种高分宽幅星载马赛克SAR成像处理方法及系统,其中,该方法提出和分析了大斜视角下用高精度距离徙动校正算法(RMA)做距离徙动校正(RCMC)后的方位信号扩展问题,然后通过方位分子孔径升采样+方位信号扩展+RMA-RCMC+方位尺度变标+方位SPECAN的成像处理方式解决了多普勒中心频率随距离频率的变化、等效速度二维空变和大斜视高精度RCMC,实现了高分宽幅马赛克SAR的高精度成像。该方法相比较于两步式等其他算法,得到的图像采样单元和分辨率量级更相当,有更高的数据处理效率,且有效解决了子孔径方法处理高分宽幅马赛克的局限性。同时,本发明中算法精度高、稳健且实用性强。

Patent Agency Ranking