-
公开(公告)号:CN109522627B
公开(公告)日:2022-12-02
申请号:CN201811296712.7
申请日:2018-11-01
Applicant: 西安电子科技大学
IPC: G06F30/20
Abstract: 本发明提出了一种基于SCADA数据的机叶片结冰预测方法,用于解决现有技术中存在的预测准确率较低,且在风机叶片结冰状况不明显时无法实现预测的局限性技术问题。实现步骤为:获取归一化SCADA数据;获取影响风机叶片结冰的特征数据集;构建并训练风机叶片结冰预测模型;对训练后的风机结冰预测模型进行优化;对风机叶片是否结冰进行判断。本发明充分考虑所有采集的数据对风机叶片结冰的影响,在提升风机叶片结冰状态预测准确度的前提下,实现了对风机叶片结冰的实时预测诊断。
-
公开(公告)号:CN109522627A
公开(公告)日:2019-03-26
申请号:CN201811296712.7
申请日:2018-11-01
Applicant: 西安电子科技大学
IPC: G06F17/50
Abstract: 本发明提出了一种基于SCADA数据的机叶片结冰预测方法,用于解决现有技术中存在的预测准确率较低,且在风机叶片结冰状况不明显时无法实现预测的局限性技术问题。实现步骤为:获取归一化SCADA数据;获取影响风机叶片结冰的特征数据集;构建并训练风机叶片结冰预测模型;对训练后的风机结冰预测模型进行优化;对风机叶片是否结冰进行判断。本发明充分考虑所有采集的数据对风机叶片结冰的影响,在提升风机叶片结冰状态预测准确度的前提下,实现了对风机叶片结冰的实时预测诊断。
-