基于差分隐私和量化的联邦学习全局模型训练方法

    公开(公告)号:CN113591145A

    公开(公告)日:2021-11-02

    申请号:CN202110856897.8

    申请日:2021-07-28

    Abstract: 一种基于差分隐私和量化的联邦学习全局模型训练方法,其步骤为:中央服务器下发预训练的联邦学习全局模型,生成每个本地用户的本地模型梯度,对每个本地用户的本地模型梯度依次进行添加噪声,阈值量化,压缩量化,将压缩量化后的本地模型梯度上传至中央服务器,中央服务器对上传的本地模型梯度进行加权聚合并更新全局模型后下发给每个本地用户,当每个本地用户的隐私预算值耗尽或者联邦学习全局模型收敛时结束训练。本发明的方法在不损失联邦学习全局模型精确度的前提下,保护了本地用户的隐私,降低了传输过程中的通信开销,提高了联邦学习全局模型的训练效率。

    基于差分隐私和量化的联邦学习全局模型训练方法

    公开(公告)号:CN113591145B

    公开(公告)日:2024-02-23

    申请号:CN202110856897.8

    申请日:2021-07-28

    Abstract: 一种基于差分隐私和量化的联邦学习全局模型训练方法,其步骤为:中央服务器下发预训练的联邦学习全局模型,生成每个本地用户的本地模型梯度,对每个本地用户的本地模型梯度依次进行添加噪声,阈值量化,压缩量化,将压缩量化后的本地模型梯度上传至中央服务器,中央服务器对上传的本地模型梯度进行加权聚合并更新全局模型后下发给每个本地用户,当每个本地用户的隐私预算值耗尽或者联邦学习全局模型收敛时结束训练。本发明的方法在不损失联邦学习全局模型精确度的前提下,保护了本地用户的隐私,降低了传输过程中的通信开销,提高了联邦学习全局模型的训练效率。

Patent Agency Ranking