Si衬底AlN模板的制备方法及Si衬底GaN外延结构的制备方法

    公开(公告)号:CN111640650B

    公开(公告)日:2023-10-13

    申请号:CN202010361191.X

    申请日:2020-04-30

    Abstract: 本发明公开了一种Si衬底AlN模板的制备方法及Si衬底GaN外延结构的制备方法,该Si衬底AlN模板的制备方法包括:选取Si衬底;在Si衬底上生长AlN成核层;通过所述AlN成核层向所述Si衬底注入离子。本发明在Si衬底上制备AlN成核层之后,便通过AlN成核层向Si衬底进行离子注入和向AlN成核层注入离子,这种方式所注入的离子种类可以得到扩展,还可以降低Si/AlN界面处载流子的浓度和AlN成核层里的载流子浓度,从而降低Si衬底AlN模板的射频损耗,提高使用此Si衬底AlN模板制作的GaN微波器件的特性,以满足GaN微波器件在航空航天、雷达、移动通信等领域的应用需求。另外,使用所述Si衬底AlN模板制备GaN器件外延结构,其设计具有更多自由度。

    低热阻硅基氮化镓微波毫米波器件材料结构及制备方法

    公开(公告)号:CN112216739B

    公开(公告)日:2022-08-12

    申请号:CN202010864740.5

    申请日:2020-08-25

    Abstract: 本发明涉及一种低热阻硅基氮化镓微波毫米波器件材料结构及制备方法,该器件材料结构包括:硅衬底层(1);高热导率介质层(2),位于所述硅衬底层(1)的上表面,且与所述硅衬底层(1)之间形成凹凸不平的第一图案化界面;缓冲层(3),位于所述高热导率介质层(2)的上表面,且与所述高热导率介质层(2)之间形成凹凸不平的第二图案化界面;沟道层(4),位于所述缓冲层(3)的上表面;复合势垒层(5),位于所述沟道层(4)的上表面。该低热阻硅基氮化镓微波毫米波器件材料结构中,高热导率介质层与硅衬底层以及缓冲层之间均形成凹凸不平的图案化界面,增大了界面的接触面积,降低了界面热阻,从而减小了器件的热阻,提高了器件的散热性能。

    Si衬底AlN模板的制备方法及Si衬底GaN外延结构的制备方法

    公开(公告)号:CN111640650A

    公开(公告)日:2020-09-08

    申请号:CN202010361191.X

    申请日:2020-04-30

    Abstract: 本发明公开了一种Si衬底AlN模板的制备方法及Si衬底GaN外延结构的制备方法,该Si衬底AlN模板的制备方法包括:选取Si衬底;在Si衬底上生长AlN成核层;通过所述AlN成核层向所述Si衬底注入离子。本发明在Si衬底上制备AlN成核层之后,便通过AlN成核层向Si衬底进行离子注入和向AlN成核层注入离子,这种方式所注入的离子种类可以得到扩展,还可以降低Si/AlN界面处载流子的浓度和AlN成核层里的载流子浓度,从而降低Si衬底AlN模板的射频损耗,提高使用此Si衬底AlN模板制作的GaN微波器件的特性,以满足GaN微波器件在航空航天、雷达、移动通信等领域的应用需求。另外,使用所述Si衬底AlN模板制备GaN器件外延结构,其设计具有更多自由度。

    一种Si基GaN毫米波传输线结构及制备方法

    公开(公告)号:CN111653553B

    公开(公告)日:2024-03-29

    申请号:CN202010361815.8

    申请日:2020-04-30

    Abstract: 本发明公开了一种Si基GaN毫米波传输线的结构及制备方法,该结构包括:Si衬底;AlN成核层,在所述Si衬底之上;III族氮化物过渡层,在所述AlN成核层之上;GaN缓冲层,在所述III族氮化物过渡层之上;金属地层,在该GaN缓冲层之上;介质插入层,在该金属地层之上;CPW,在该介质插入层之上;CPW的地线通过介质插入层中的通孔与金属地层相连。本发明的目的在于针对上述毫米波电路应用中传输线射频损耗较高的问题,提出一种面向毫米波应用的Si基GaN结构上的传输线结构及制备方法,通过在CPW与GaN层之间插入一层金属地,以屏蔽AlN/Si界面处p型导电沟道的影响,从而降低传输线的射频损耗,以满足其在毫米波电路中的应用需求。

    低热阻硅基氮化镓微波毫米波器件材料结构及制备方法

    公开(公告)号:CN112216739A

    公开(公告)日:2021-01-12

    申请号:CN202010864740.5

    申请日:2020-08-25

    Abstract: 本发明涉及一种低热阻硅基氮化镓微波毫米波器件材料结构及制备方法,该器件材料结构包括:硅衬底层(1);高热导率介质层(2),位于所述硅衬底层(1)的上表面,且与所述硅衬底层(1)之间形成凹凸不平的第一图案化界面;缓冲层(3),位于所述高热导率介质层(2)的上表面,且与所述高热导率介质层(2)之间形成凹凸不平的第二图案化界面;沟道层(4),位于所述缓冲层(3)的上表面;复合势垒层(5),位于所述沟道层(4)的上表面。该低热阻硅基氮化镓微波毫米波器件材料结构中,高热导率介质层与硅衬底层以及缓冲层之间均形成凹凸不平的图案化界面,增大了界面的接触面积,降低了界面热阻,从而减小了器件的热阻,提高了器件的散热性能。

    基于阴阳极环形嵌套的大功率GaN准垂直肖特基二极管及其制备方法

    公开(公告)号:CN110993684A

    公开(公告)日:2020-04-10

    申请号:CN201911169340.6

    申请日:2019-11-26

    Abstract: 本发明公开了基于阴阳极环形嵌套的大功率GaN准垂直肖特基二极管及其制备方法,主要解决目前GaN准垂直肖特基二极管输出功率无法满足更高功率需求的问题。其自下而上包括:衬底(1)、成核层(2)、缓冲层(3)和n+型GaN层(4),n+型GaN层(4)的上部设有n-型GaN层(5)和阴极(6),n-型GaN层(5)的上部设有阳极(7),该阴极和阳极采用环形嵌套结构,即阳极是以实心圆为中心,外部分布多个开口圆环的同心结构;阴极是分布在阳极环之间的多个开口圆环,形成阳极环与阴极环的同心环形交替嵌套结构。本发明降低了电场的边缘效应,提高了GaN准垂直二极管输出功率密度,可用于限幅器、微波整流和功率开关电路。

    一种Si基GaN毫米波传输线结构及制备方法

    公开(公告)号:CN111653553A

    公开(公告)日:2020-09-11

    申请号:CN202010361815.8

    申请日:2020-04-30

    Abstract: 本发明公开了一种Si基GaN毫米波传输线的结构及制备方法,该结构包括:Si衬底;AlN成核层,在所述Si衬底之上;III族氮化物过渡层,在所述AlN成核层之上;GaN缓冲层,在所述III族氮化物过渡层之上;金属地层,在该GaN缓冲层之上;介质插入层,在该金属地层之上;CPW,在该介质插入层之上;CPW的地线通过介质插入层中的通孔与金属地层相连。本发明的目的在于针对上述毫米波电路应用中传输线射频损耗较高的问题,提出一种面向毫米波应用的Si基GaN结构上的传输线结构及制备方法,通过在CPW与GaN层之间插入一层金属地,以屏蔽AlN/Si界面处p型导电沟道的影响,从而降低传输线的射频损耗,以满足其在毫米波电路中的应用需求。

    大功率阴阳极环形叉指GaN准垂直pn结二极管及制备方法

    公开(公告)号:CN110729351A

    公开(公告)日:2020-01-24

    申请号:CN201910993203.8

    申请日:2019-10-18

    Abstract: 本发明公开了一种大功率阴阳极环形叉指GaN准垂直pn结二极管及其制备方法,主要解决目前GaN准垂直pn结二极管输出功率无法满足更高功率需求的问题。其自下而上包括:衬底(1)、缓冲层(2)和n型GaN层(3),n型GaN层(3)的上部设有p型GaN层(4)和阴极(5),p型GaN层(4)的上部设有阳极(6),该阴极和阳极采用环形叉指结构,即阳极是以实心圆为中心,外部分布多个开口圆环的同心结构;阴极是分布在阳极环之间的多个开口圆环,形成阳极环与阴极环的同心环形交替嵌套结构。本发明降低了电场的边缘效应,并通过多层环形互连提高了GaN准垂直二极管输出功率密度,可用于微波整流、功率开关电路。

Patent Agency Ranking