基于对抗学习与异构图学习的序列化微服务资源预测方法

    公开(公告)号:CN117648197B

    公开(公告)日:2024-05-03

    申请号:CN202410123314.4

    申请日:2024-01-30

    Abstract: 本发明公开了一种基于对抗学习与异构图学习的序列化微服务资源预测方法,属于时间序列预测领域,用以提升资源预测的准确性、泛化能力和计算效率。本发明使用微服务资源节点与运行在各节点上的容器构建异构图,利用图神经网络进行学习,获取异构图中的节点表示,在训练过程中利用对抗学习方法提高图神经网络的训练质量,增强图神经网络的鲁棒性和节点表示的质量,同时降低计算复杂度。最后将异构图中每个节点的节点表示与对应节点的时间序列数据相结合,采用LSTM和多头注意力机制进行CPU利用率的预测。本发明提升了预测模型的泛化能力和预测准确率,提高了模型训练速度和预测效率。

    基于对抗学习与异构图学习的序列化微服务资源预测方法

    公开(公告)号:CN117648197A

    公开(公告)日:2024-03-05

    申请号:CN202410123314.4

    申请日:2024-01-30

    Abstract: 本发明公开了一种基于对抗学习与异构图学习的序列化微服务资源预测方法,属于时间序列预测领域,用以提升资源预测的准确性、泛化能力和计算效率。本发明使用微服务资源节点与运行在各节点上的容器构建异构图,利用图神经网络进行学习,获取异构图中的节点表示,在训练过程中利用对抗学习方法提高图神经网络的训练质量,增强图神经网络的鲁棒性和节点表示的质量,同时降低计算复杂度。最后将异构图中每个节点的节点表示与对应节点的时间序列数据相结合,采用LSTM和多头注意力机制进行CPU利用率的预测。本发明提升了预测模型的泛化能力和预测准确率,提高了模型训练速度和预测效率。

Patent Agency Ranking