一种基于深度网络特征间重要性的图像质量评估方法

    公开(公告)号:CN109671063B

    公开(公告)日:2020-08-18

    申请号:CN201811512050.2

    申请日:2018-12-11

    Abstract: 本发明公开了一种基于深度网络特征间重要性的图像质量评估方法,该方法在端到端的神经网络模型训练中加入了判别特征图间重要性关系的模块,能够更准确的预测图像质量,并且在各个图像质量评估(IQA)数据集上展现出较强的泛化能力。具体包括步骤:1)准备训练测试网络模型所用的图像质量评估数据集,将图像质量评估数据集按照图像内容随机划分为训练集和测试集;2)将SeNet模块加入VGG‑16网络以搭建用于图像质量评估的多个不同组合方式的神经网络模型VGG*‑SE,使用训练数据集分别对其进行训练,当训练的模型在测试数据集上达到预期的精度,选择此模型作为最终模型,并保存网络模型训练后的参数;3)使用选取的最终模型计算测试集的预测精度。

    一种基于显著性的CNN盲图像质量评估方法

    公开(公告)号:CN111028203A

    公开(公告)日:2020-04-17

    申请号:CN201911129340.3

    申请日:2019-11-18

    Abstract: 本发明公开了一种基于显著性的CNN盲图像质量评估方法,通过给原始图像添加不同失真等级以及失真区域的多个失真版本图,并赋予不同的数字标签来代表质量的高低,将显著性和失真两个因素有效的引入了数据扩充中,数据集的有效扩充有效的缓解了图像质量评估小数据集训练长网络的压力,从而极大的提高了模型最终预测性能,在各个图像质量评估数据集上展现出较强的泛化能力。主要包括以下步骤:1)分别制作预训练阶段和微调阶段所需的数据集;2)利用预训练阶段制作的数据集对VGG-16网络进行预训练,并保存网络模型;3)利用微调阶段的IQA训练集对预训练好的VGG-16网络进行微调训练,并保存网络模型;4)使用上述微调后的模型计算IQA测试集的预测精度。

    一种基于深度网络特征间重要性的图像质量评估方法

    公开(公告)号:CN109671063A

    公开(公告)日:2019-04-23

    申请号:CN201811512050.2

    申请日:2018-12-11

    Abstract: 本发明公开了一种基于深度网络特征间重要性的图像质量评估方法,该方法在端到端的神经网络模型训练中加入了判别特征图间重要性关系的模块,能够更准确的预测图像质量,并且在各个图像质量评估(IQA)数据集上展现出较强的泛化能力。具体包括步骤:1)准备训练测试网络模型所用的图像质量评估数据集,将图像质量评估数据集按照图像内容随机划分为训练集和测试集;2)将SeNet模块加入VGG-16网络以搭建用于图像质量评估的多个不同组合方式的神经网络模型VGG*-SE,使用训练数据集分别对其进行训练,当训练的模型在测试数据集上达到预期的精度,选择此模型作为最终模型,并保存网络模型训练后的参数;3)使用选取的最终模型计算测试集的预测精度。

Patent Agency Ranking