-
公开(公告)号:CN109671063A
公开(公告)日:2019-04-23
申请号:CN201811512050.2
申请日:2018-12-11
Applicant: 西安交通大学
CPC classification number: G06T7/0002 , G06N3/0454 , G06N3/08 , G06T2207/20081 , G06T2207/20084 , G06T2207/30168
Abstract: 本发明公开了一种基于深度网络特征间重要性的图像质量评估方法,该方法在端到端的神经网络模型训练中加入了判别特征图间重要性关系的模块,能够更准确的预测图像质量,并且在各个图像质量评估(IQA)数据集上展现出较强的泛化能力。具体包括步骤:1)准备训练测试网络模型所用的图像质量评估数据集,将图像质量评估数据集按照图像内容随机划分为训练集和测试集;2)将SeNet模块加入VGG-16网络以搭建用于图像质量评估的多个不同组合方式的神经网络模型VGG*-SE,使用训练数据集分别对其进行训练,当训练的模型在测试数据集上达到预期的精度,选择此模型作为最终模型,并保存网络模型训练后的参数;3)使用选取的最终模型计算测试集的预测精度。
-
公开(公告)号:CN109671063B
公开(公告)日:2020-08-18
申请号:CN201811512050.2
申请日:2018-12-11
Applicant: 西安交通大学
Abstract: 本发明公开了一种基于深度网络特征间重要性的图像质量评估方法,该方法在端到端的神经网络模型训练中加入了判别特征图间重要性关系的模块,能够更准确的预测图像质量,并且在各个图像质量评估(IQA)数据集上展现出较强的泛化能力。具体包括步骤:1)准备训练测试网络模型所用的图像质量评估数据集,将图像质量评估数据集按照图像内容随机划分为训练集和测试集;2)将SeNet模块加入VGG‑16网络以搭建用于图像质量评估的多个不同组合方式的神经网络模型VGG*‑SE,使用训练数据集分别对其进行训练,当训练的模型在测试数据集上达到预期的精度,选择此模型作为最终模型,并保存网络模型训练后的参数;3)使用选取的最终模型计算测试集的预测精度。
-