-
公开(公告)号:CN107815578B
公开(公告)日:2019-06-25
申请号:CN201711024351.6
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种两次挤压制备纳米准晶增强Mg‑Zn‑Y合金的方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比制备铸态Mg‑Zn‑Y合金;设定的各组成元素的原子百分含量分别为:0.5‑6%Zn、0.08‑1.2%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5‑7:1;B、将铸态Mg‑Zn‑Y合金在380‑420℃退火8‑20h,随炉冷却;C、将经过退火的Mg‑Zn‑Y合金在300‑400℃下保温2‑4h后,进行热挤压,挤压温度为300‑400℃,挤压比为9‑60:1;D、将步骤C得到的热挤压加工后的Mg‑Zn‑Y合金置于热处理炉中,随炉升温至540‑600℃,保温5‑20min,淬火;E、将步骤D得到的Mg‑Zn‑Y合金在300‑400℃下保温2‑4h后,然后进行二次热挤压,即得。该方法可制备兼具优良的屈服强度、拉伸强度和延伸率的高性能镁合金。
-
公开(公告)号:CN107815579B
公开(公告)日:2019-05-21
申请号:CN201711030531.5
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种等径角挤压制备纳米准晶增强Mg‑Zn‑Y合金的方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比制备铸态Mg‑Zn‑Y合金;设定的各组成元素的原子百分含量分别为:0.5‑6%Zn、0.08‑1.2%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5‑7:1;B、将铸态Mg‑Zn‑Y合金在380‑420℃退火8‑20h,随炉冷却;C、将经过退火的Mg‑Zn‑Y合金在300‑400℃下保温2‑4h后,进行热挤压,挤压温度为300‑400℃,挤压比为9‑60:1;D、将步骤C得到的热挤压加工后的Mg‑Zn‑Y合金置于热处理炉中,随炉升温至540‑600℃,保温5‑20min,淬火;E、将步骤D得到的Mg‑Zn‑Y合金在180‑330℃下保温2‑4h后,然后进行等径角挤压,即得。该方法可制备兼具优良的屈服强度、拉伸强度和延伸率的高性能镁合金。
-
公开(公告)号:CN107760950B
公开(公告)日:2019-05-21
申请号:CN201711030526.4
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种纳米共准晶增强Mg‑Zn‑Y合金的制备方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比,制备铸态Mg‑Zn‑Y合金;所述设定的各组成元素的原子百分含量分别为:0.5‑3%Zn、0.08‑0.6%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5‑7:1;B、将铸态Mg‑Zn‑Y合金在380‑420℃退火8‑20h,随炉冷却;C、将经过退火的铸态Mg‑Zn‑Y合金在300‑400℃下保温2‑4h后,进行热挤压处理;D、将步骤C得到的热挤压加工后的Mg‑Zn‑Y合金置于热处理炉中,随炉升温至550‑600℃,保温5‑20min,然后进行淬火处理,即得。该制备方法可获得了层片间距小于50nm的(α‑Mg+I‑phase)共准晶增强Mg‑Zn‑Y合金。
-
公开(公告)号:CN107774732B
公开(公告)日:2019-04-23
申请号:CN201711024352.0
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种往复挤压制备纳米准晶增强Mg‑Zn‑Y合金的方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比制备铸态Mg‑Zn‑Y合金;设定的各组成元素的原子百分含量分别为:0.5‑6%Zn、0.08‑1.2%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5‑7:1;B、将铸态Mg‑Zn‑Y合金在380‑420℃退火8‑20h,随炉冷却;C、将经过退火的Mg‑Zn‑Y合金在300‑400℃下保温2‑4h后,进行热挤压,挤压温度为300‑400℃,挤压比为9‑60:1;D、将步骤C得到的热挤压加工后的Mg‑Zn‑Y合金置于热处理炉中,随炉升温至540‑600℃,保温5‑20min,淬火;E、将步骤D得到的Mg‑Zn‑Y合金在200‑380℃下保温2‑4h后,然后进行往复挤压,即得。该方法可制备兼具优良的屈服强度、拉伸强度和延伸率的高性能镁合金。
-
公开(公告)号:CN107815579A
公开(公告)日:2018-03-20
申请号:CN201711030531.5
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种等径角挤压制备纳米准晶增强Mg-Zn-Y合金的方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比制备铸态Mg-Zn-Y合金;设定的各组成元素的原子百分含量分别为:0.5-6%Zn、0.08-1.2%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5-7:1;B、将铸态Mg-Zn-Y合金在380-420℃退火8-20h,随炉冷却;C、将经过退火的Mg-Zn-Y合金在300-400℃下保温2-4h后,进行热挤压,挤压温度为300-400℃,挤压比为9-60:1;D、将步骤C得到的热挤压加工后的Mg-Zn-Y合金置于热处理炉中,随炉升温至540-600℃,保温5-20min,淬火;E、将步骤D得到的Mg-Zn-Y合金在180-330℃下保温2-4h后,然后进行等径角挤压,即得。该方法可制备兼具优良的屈服强度、拉伸强度和延伸率的高性能镁合金。
-
公开(公告)号:CN107774732A
公开(公告)日:2018-03-09
申请号:CN201711024352.0
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种往复挤压制备纳米准晶增强Mg-Zn-Y合金的方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比制备铸态Mg-Zn-Y合金;设定的各组成元素的原子百分含量分别为:0.5-6%Zn、0.08-1.2%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5-7:1;B、将铸态Mg-Zn-Y合金在380-420℃退火8-20h,随炉冷却;C、将经过退火的Mg-Zn-Y合金在300-400℃下保温2-4h后,进行热挤压,挤压温度为300-400℃,挤压比为9-60:1;D、将步骤C得到的热挤压加工后的Mg-Zn-Y合金置于热处理炉中,随炉升温至540-600℃,保温5-20min,淬火;E、将步骤D得到的Mg-Zn-Y合金在200-380℃下保温2-4h后,然后进行往复挤压,即得。该方法可制备兼具优良的屈服强度、拉伸强度和延伸率的高性能镁合金。
-
公开(公告)号:CN107760950A
公开(公告)日:2018-03-06
申请号:CN201711030526.4
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种纳米共准晶增强Mg-Zn-Y合金的制备方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比,制备铸态Mg-Zn-Y合金;所述设定的各组成元素的原子百分含量分别为:0.5-3%Zn、0.08-0.6%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5-7:1;B、将铸态Mg-Zn-Y合金在380-420℃退火8-20h,随炉冷却;C、将经过退火的铸态Mg-Zn-Y合金在300-400℃下保温2-4h后,进行热挤压处理;D、将步骤C得到的热挤压加工后的Mg-Zn-Y合金置于热处理炉中,随炉升温至550-600℃,保温5-20min,然后进行淬火处理,即得。该制备方法可获得了层片间距小于50nm的(α-Mg+I-phase)共准晶增强Mg-Zn-Y合金。
-
公开(公告)号:CN107815578A
公开(公告)日:2018-03-20
申请号:CN201711024351.6
申请日:2017-10-27
Applicant: 西南交通大学
Abstract: 一种两次挤压制备纳米准晶增强Mg-Zn-Y合金的方法,步骤如下:A、按照设定的各组成元素的原子百分含量配比制备铸态Mg-Zn-Y合金;设定的各组成元素的原子百分含量分别为:0.5-6%Zn、0.08-1.2%Y,其余为Mg,且所述Zn、Y原子百分含量比值为5-7:1;B、将铸态Mg-Zn-Y合金在380-420℃退火8-20h,随炉冷却;C、将经过退火的Mg-Zn-Y合金在300-400℃下保温2-4h后,进行热挤压,挤压温度为300-400℃,挤压比为9-60:1;D、将步骤C得到的热挤压加工后的Mg-Zn-Y合金置于热处理炉中,随炉升温至540-600℃,保温5-20min,淬火;E、将步骤D得到的Mg-Zn-Y合金在300-400℃下保温2-4h后,然后进行二次热挤压,即得。该方法可制备兼具优良的屈服强度、拉伸强度和延伸率的高性能镁合金。
-
公开(公告)号:CN206588502U
公开(公告)日:2017-10-27
申请号:CN201720229363.1
申请日:2017-03-10
Applicant: 西南交通大学
IPC: B23K37/00
Abstract: 本实用新型公开了一种焊接用观测装置,包括中空的罩体,所述罩体上设有观测孔、焊枪的移动通道以及控制焊枪移动的控制机构;还包括光致变色玻璃,所述光致变色玻璃的形状与所述观测孔相匹配并安装在所述观测孔的横截面上。光致变色玻璃可以在焊接前后作出适应性变化,在保护眼睛的同时方便学生学习和老师讲解;本实用新型具有密封作用,可完全将学生与焊接过程隔离开来,防止学生在观察焊接过程时,吸入大量粉尘或烟尘。除尘装置可以在焊接完成后除去罩体内残余的烟尘,防止其排入大气,保护环境。
-
-
-
-
-
-
-
-