一种转子碰摩故障识别方法

    公开(公告)号:CN101256548A

    公开(公告)日:2008-09-03

    申请号:CN200710188449.5

    申请日:2007-12-03

    Abstract: 本发明公开了一种转子碰摩故障识别方法,以转子振动信号的峭度大小为目标函数,选取自适应匹配转子振动信号特征的第二代小波预测器和更新器,对转子信号进行分解;将分解后各频带的转子振动信号,利用傅立叶变换方法再处理,消除无关频率成分,提取次谐波,实现对转子碰摩严重程度的识别。本发明很好地解决了第二代小波分解频带交叠问题,提高了转子碰摩故障识别的准确性,为机电设备故障识别提供了有效的实用新技术;本发明简单可靠,便于工程实践中使用。

    一种转子碰摩故障识别方法

    公开(公告)号:CN101256548B

    公开(公告)日:2010-06-09

    申请号:CN200710188449.5

    申请日:2007-12-03

    Abstract: 本发明公开了一种转子碰摩故障识别方法,以转子振动信号的峭度大小为目标函数,选取自适应匹配转子振动信号特征的第二代小波预测器和更新器,对转子信号进行分解;将分解后各频带的转子振动信号,利用傅立叶变换方法再处理,消除无关频率成分,提取次谐波,实现对转子碰摩严重程度的识别。本发明很好地解决了第二代小波分解频带交叠问题,提高了转子碰摩故障识别的准确性,为机电设备故障识别提供了有效的实用新技术;本发明简单可靠,便于工程实践中使用。

    一种基于随机卷积神经网络的飞机机电系统故障识别方法

    公开(公告)号:CN109001557A

    公开(公告)日:2018-12-14

    申请号:CN201810592166.5

    申请日:2018-06-11

    Abstract: 本发明提供了一种基于随机卷积神经网络的飞机机电系统故障识别方法,首先使用短时傅里叶变换将振动加速度信号构建为空间相关性良好的二维时频图,解决了一维信号的二维转化问题;然后将转化后的二维时频图输入随机卷积神经网络,该网络采用随机辍学机制,抑制模型过拟合并提升泛化能力,通过动量随机梯度下降算法更新网络参数,完成识别模型的构造;最后使用随机卷积神经网络完成对飞机机电系统故障的识别。本发明的识别效果良好,实用性强,简单易行,适用于飞机系统的故障识别。

Patent Agency Ranking