基于抽样子图的网络资源动态分配方法、系统及介质

    公开(公告)号:CN114826921A

    公开(公告)日:2022-07-29

    申请号:CN202210479810.4

    申请日:2022-05-05

    Abstract: 本发明公开了一种基于抽样子图的网络资源动态分配方法、系统及介质,包括对当前的网际网络和网络节点进行建模以得到图数据;确定图数据的最终特征向量;将最终特征向量输入抽样子图模型中进行处理,并计算隐层神经元被开启的概率分布,然后根据概率分布继续采样,并对显层神经元进行采样,从而更新网络的权重和偏置,并根据图数据的结构相似度来判断是否继续更新,若当前网络和上一次网络的结构相似度超过预设阈值时,则停止更新网络的权重和偏置;构建多层带权重的网络,并进行随机游走以得到满足预设条件的目标上下文,进而根据目标上下文中各个节点的状态自动分配网络资源。本发明不仅能够在小型网络中使用,更能在超大规模网络上进行网络资源分配。

    基于抽样子图的网络资源动态分配方法、系统及介质

    公开(公告)号:CN114826921B

    公开(公告)日:2024-05-17

    申请号:CN202210479810.4

    申请日:2022-05-05

    Abstract: 本发明公开了一种基于抽样子图的网络资源动态分配方法、系统及介质,包括对当前的网际网络和网络节点进行建模以得到图数据;确定图数据的最终特征向量;将最终特征向量输入抽样子图模型中进行处理,并计算隐层神经元被开启的概率分布,然后根据概率分布继续采样,并对显层神经元进行采样,从而更新网络的权重和偏置,并根据图数据的结构相似度来判断是否继续更新,若当前网络和上一次网络的结构相似度超过预设阈值时,则停止更新网络的权重和偏置;构建多层带权重的网络,并进行随机游走以得到满足预设条件的目标上下文,进而根据目标上下文中各个节点的状态自动分配网络资源。本发明不仅能够在小型网络中使用,更能在超大规模网络上进行网络资源分配。

Patent Agency Ranking