-
公开(公告)号:CN107065839A
公开(公告)日:2017-08-18
申请号:CN201710418868.7
申请日:2017-06-06
Applicant: 苏州大学
IPC: G05B23/02
Abstract: 本发明公开了一种基于相异性递归消除特征的故障诊断方法,通过对同一特征子集计算相异性,并比较每个特征造成的相异性,对特征值按照其对应的相异性也就是造成两个数据集之间的差异进行排序,得到排序后的特征索引子集,再通过优选个数得到关键特征个数,就可以在排序后的特征子集中取出相应个数的关键特征。因此本方法是考虑的是整个数据集之间的相异性,不要求过程是线性的或高斯的,因此在非线性和高斯的过程上有较好的结果,降低计算复杂度,同时可以准确的找出符合要求的最优特征子集减少了不相关特征对故障诊断的影响。本发明还提供一种基于相异性递归消除特征的故障诊断装置,同样能实现上述技术效果。
-
公开(公告)号:CN106295712A
公开(公告)日:2017-01-04
申请号:CN201610693517.2
申请日:2016-08-19
Applicant: 苏州大学
IPC: G06K9/62
CPC classification number: G06K9/6269 , G06K9/6256
Abstract: 本发明公开了检测一种故障检测方法和系统,对预先收集的工业过程中的正常训练数据进行标准化预处理,并计算经过标准化预处理后的正常训练数据的相对密度;根据经过标准化预处理后的正常训练数据和相对密度建立训练样本数据集;为训练样本数据集建立密度诱导支持向量数据描述模型,对密度诱导支持向量数据描述模型的参数T进行定值处理,令参数T为相对密度的平均值,并利用密度诱导支持向量数据描述模型检测在工业过程中收集的测试数据是否为故障数据。本方案对密度诱导支持向量数据描述模型的参数T提供了定值,令参数T为相对密度的平均值,从而可以提高基于密度诱导支持向量数据描述的故障检测方法的稳定性,保证高效的故障检测性能。
-
公开(公告)号:CN108052974B
公开(公告)日:2022-05-17
申请号:CN201711320019.4
申请日:2017-12-12
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本申请公开了一种故障诊断方法、系统、设备及存储介质,该方法包括:分别获取目标设备在正常运行和故障运行时的与初始特征集对应的特征数据集,得到包括正常特征数据集和故障特征数据集的训练数据;分别计算正常特征数据集中每一特征数据与故障特征数据集中相应的特征数据之间对应的KL距离,得到KL距离集;采用支持向量机分类在训练数据上进行交叉验证;根据验证结果以及KL距离集中KL距离的大小,从初始特征集中确定出与故障运行相关的特征,得到最优特征集;当获取到目标设备的待诊断数据,则从待诊断数据中确定出与最优特征集对应的特征数据,然后利用该特征数据对目标设备进行相应的故障诊断。本申请有效地提升了后续故障诊断结果的准确性。
-
公开(公告)号:CN107480628B
公开(公告)日:2020-08-25
申请号:CN201710680306.X
申请日:2017-08-10
Applicant: 苏州大学
Abstract: 本发明实施例公开了一种人脸识别方法及装置。其中,方法包括对获取到的待识别图像与包含多个用户的单幅样本图像的样本训练库进行图像分割,将待识别图像与各样本图像分割为相同预设块数、位置一一对应、不重叠的多幅子图像;计算待识别图像的各子图像与各样本图像对应的子图像的相异性,将各个子图像的相异性值进行平均值融合计算,以得到待识别图像与各所述样本图像的相异性值;根据各相异性值,利用最近邻分类器为待识别图像在样本训练库中匹配对应的用户。有效避免了传统的利用相似性识别由于训练样本少造成的准确率较低的现象;有利于提升单样本训练的人脸图像识别的准确性,从而提高人脸识别的准确率,以提高身份鉴别的安全性。
-
公开(公告)号:CN107065839B
公开(公告)日:2019-09-27
申请号:CN201710418868.7
申请日:2017-06-06
Applicant: 苏州大学
IPC: G05B23/02
Abstract: 本发明公开了一种基于相异性递归消除特征的故障诊断方法,通过对同一特征子集计算相异性,并比较每个特征造成的相异性,对特征值按照其对应的相异性也就是造成两个数据集之间的差异进行排序,得到排序后的特征索引子集,再通过优选个数得到关键特征个数,就可以在排序后的特征子集中取出相应个数的关键特征。因此本方法是考虑的是整个数据集之间的相异性,不要求过程是线性的或高斯的,因此在非线性和高斯的过程上有较好的结果,降低计算复杂度,同时可以准确的找出符合要求的最优特征子集减少了不相关特征对故障诊断的影响。本发明还提供一种基于相异性递归消除特征的故障诊断装置,同样能实现上述技术效果。
-
公开(公告)号:CN108052974A
公开(公告)日:2018-05-18
申请号:CN201711320019.4
申请日:2017-12-12
Applicant: 苏州大学
Abstract: 本申请公开了一种故障诊断方法、系统、设备及存储介质,该方法包括:分别获取目标设备在正常运行和故障运行时的与初始特征集对应的特征数据集,得到包括正常特征数据集和故障特征数据集的训练数据;分别计算正常特征数据集中每一特征数据与故障特征数据集中相应的特征数据之间对应的KL距离,得到KL距离集;采用支持向量机分类在训练数据上进行交叉验证;根据验证结果以及KL距离集中KL距离的大小,从初始特征集中确定出与故障运行相关的特征,得到最优特征集;当获取到目标设备的待诊断数据,则从待诊断数据中确定出与最优特征集对应的特征数据,然后利用该特征数据对目标设备进行相应的故障诊断。本申请有效地提升了后续故障诊断结果的准确性。
-
公开(公告)号:CN107067023A
公开(公告)日:2017-08-18
申请号:CN201710017368.2
申请日:2017-01-10
Applicant: 苏州大学
IPC: G06K9/62
CPC classification number: G06K9/6269
Abstract: 本申请公开一种故障诊断方法和装置。本发明将特征选择与支持向量机相结合,利用特征之间的差异性,选出与该故障相关的特征,差异越大,代表该特征与正常情况下有了很大的偏离,说明该特征可能是造成故障的一个重要原因,从而减少无用特征对分类结果的影响,本发明可较为容易选择出与故障相关的重要特征,提高了故障诊断的精度。
-
公开(公告)号:CN111507387A
公开(公告)日:2020-08-07
申请号:CN202010274957.0
申请日:2020-04-09
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本发明涉及一种基于半监督学习的成对向量投影数据分类方法及系统,包括:根据两类训练数据构建邻接图,求解拉普拉斯矩阵,将所述拉普拉斯矩阵代入拉普拉斯流形正则项中;分别计算正类拉普拉斯流形正则项和负类拉普拉斯流形正则项、正类数据的类内散度矩阵和负类数据的类内散度矩阵、以及正类类间散度矩阵和负类类间散度矩阵;根据上述数据得到最优问题,并求解得到两个最优的投影向量;将无标签数据通过核函数投影到高维空间,将两个最优的投影向量投影到两个不同的子空间,分别计算两个最优的投影向量到各子空间中心的距离,得到无标签数据的标签。本发明有利于提高分类精度。
-
公开(公告)号:CN107480628A
公开(公告)日:2017-12-15
申请号:CN201710680306.X
申请日:2017-08-10
Applicant: 苏州大学
Abstract: 本发明实施例公开了一种人脸识别方法及装置。其中,方法包括对获取到的待识别图像与包含多个用户的单幅样本图像的样本训练库进行图像分割,将待识别图像与各样本图像分割为相同预设块数、位置一一对应、不重叠的多幅子图像;计算待识别图像的各子图像与各样本图像对应的子图像的相异性,将各个子图像的相异性值进行平均值融合计算,以得到待识别图像与各所述样本图像的相异性值;根据各相异性值,利用最近邻分类器为待识别图像在样本训练库中匹配对应的用户。有效避免了传统的利用相似性识别由于训练样本少造成的准确率较低的现象;有利于提升单样本训练的人脸图像识别的准确性,从而提高人脸识别的准确率,以提高身份鉴别的安全性。
-
-
-
-
-
-
-
-