一种基于半监督类别增量的轴承故障诊断方法及系统

    公开(公告)号:CN117493964A

    公开(公告)日:2024-02-02

    申请号:CN202311507030.7

    申请日:2023-11-13

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于半监督类别增量的轴承故障诊断方法及系统,所述方法包括:获取原始振动信号;根据所述原始振动信号生成数据流;所述数据流包括第一数据集和第二数据集;根据所述第一数据集训练半监督类别增量模型,生成初始化模型;所述初始化模型包括特征提取器和分类器;将所述第二数据集输入至所述特征提取器生成第二数据集特征矩阵;所述第二数据集特征矩阵通过半监督类别增量规则更新所述分类器,以生成第一模型和输出权重;根据所述输出权重确定轴承故障类别。通过引入半监督学习算法和增量学习策略,能够在仅使用少量标记样本的情况下,利用大量未标记样本进行模型训练。有助于提高轴承故障诊断的准确性和效率。

Patent Agency Ranking