-
公开(公告)号:CN112434133B
公开(公告)日:2024-05-17
申请号:CN202011389237.5
申请日:2020-12-02
Applicant: 康佳集团股份有限公司 , 苏州大学 , 哈尔滨工业大学(深圳) , 深圳哈工大科技创新产业发展有限公司
IPC: G06F16/33 , G06F16/332 , G06F16/35 , G06F40/295 , G06F40/30 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种意图分类方法、装置、智能终端及存储介质,其中,上述意图分类方法包括:获取目标文本;基于上述目标文本进行命名实体识别,获取命名实体识别结果;基于上述命名实体识别结果,对上述目标文本进行规范化处理,获取规范化处理后的文本句式,作为规范化处理结果;基于上述目标文本和上述规范化处理结果进行意图分类;输出上述意图分类的结果。本发明方案不必基于模板进行意图分析,且可以结合文本的句式特征强化意图分类的性能;使得意图分类时不依赖于模板,不受数据规模以及数据质量的影响,同时可缓解进行分类时遗忘文本特征的问题,有利于提高意图分类的准确性。
-
公开(公告)号:CN108664589B
公开(公告)日:2022-03-15
申请号:CN201810431979.6
申请日:2018-05-08
Applicant: 苏州大学
IPC: G06F16/35 , G06F16/33 , G06F40/295
Abstract: 本申请公开了一种基于领域自适应的文本信息提取方法,包括:对输入文本进行预处理,得到文本向量;根据第二领域与第一领域间的共有特征提取参数提取文本向量的共有特征,根据第一领域内的私有特征提取参数提取文本向量的私有特征;对进行领域模糊后的共有特征进行领域分类;根据分类结果以及第一领域的领域信息对共有特征提取参数进行分析修正;根据私有特征对文本向量进行相邻词语预测;根据预测结果以及文本中的相邻词语对私有特征提取参数进行分析修正。该方法可提升社交媒体等领域的文本分析提取能力。本申请还公开了基于领域自适应的文本信息提取装置、系统及可读存储介质,具有上述有益效果。
-
公开(公告)号:CN112765959A
公开(公告)日:2021-05-07
申请号:CN202011645068.7
申请日:2020-12-31
Applicant: 康佳集团股份有限公司 , 苏州大学 , 哈尔滨工业大学(深圳) , 深圳哈工大科技创新产业发展有限公司
IPC: G06F40/216 , G06F40/284 , G06N3/04
Abstract: 本发明公开一种意图识别方法、装置、设备及计算机可读存储介质,其中,所述意图识别方法包括步骤:获取文字信息,并通过词嵌入表将文字信息转化成词向量;将词向量输入双向LSTM模型,通过双向LSTM模型的编辑层输出文本向量;根据文本向量计算文字信息中所有词汇的概率;将概率中的最大值对应的词汇确定为意图词汇,实现了不需更换数据转换规则的情况下智能识别用户的意图,提高了识别效率。
-
公开(公告)号:CN106951412B
公开(公告)日:2020-07-24
申请号:CN201710182656.3
申请日:2017-03-24
Applicant: 苏州大学
IPC: G06F40/289 , G06F40/30
Abstract: 本发明公开了一种中文情感表达组合抽取方法,包括:提取目标中文语句库中每个语句包含的对象、观点词和关系词;构建该语句对应的一个或多个组合项,每个组合项包含一个情感表达组合及该情感表达组合与一个关系词的映射关系,每个情感表达组合为一个对象和一个观点词构成的二元对;对所有语句对应的组合项进行汇总,确定组合项候选集;根据情感表达组合与关系词的映射关系,对组合项候选集中的情感表达组合进行排序;根据排序结果,确定待抽取的情感表达组合。应用本发明实施例所提供的技术方案,抽取到具体的情感表达组合,可以作为情感分析的情感资源,提高情感分析的可靠性。本发明还公开了一种中文情感表达组合抽取装置,具有相应技术效果。
-
公开(公告)号:CN108664589A
公开(公告)日:2018-10-16
申请号:CN201810431979.6
申请日:2018-05-08
Applicant: 苏州大学
Abstract: 本申请公开了一种基于领域自适应的文本信息提取方法,包括:对输入文本进行预处理,得到文本向量;根据第二领域与第一领域间的共有特征提取参数提取文本向量的共有特征,根据第一领域内的私有特征提取参数提取文本向量的私有特征;对进行领域模糊后的共有特征进行领域分类;根据分类结果以及第一领域的领域信息对共有特征提取参数进行分析修正;根据私有特征对文本向量进行相邻词语预测;根据预测结果以及文本中的相邻词语对私有特征提取参数进行分析修正。该方法可提升社交媒体等领域的文本分析提取能力。本申请还公开了基于领域自适应的文本信息提取装置、系统及可读存储介质,具有上述有益效果。
-
公开(公告)号:CN112765959B
公开(公告)日:2024-05-28
申请号:CN202011645068.7
申请日:2020-12-31
Applicant: 康佳集团股份有限公司 , 苏州大学 , 哈尔滨工业大学(深圳) , 深圳哈工大科技创新产业发展有限公司
IPC: G06F40/216 , G06F40/284 , G06N3/0442
Abstract: 本发明公开一种意图识别方法、装置、设备及计算机可读存储介质,其中,所述意图识别方法包括步骤:获取文字信息,并通过词嵌入表将文字信息转化成词向量;将词向量输入双向LSTM模型,通过双向LSTM模型的编辑层输出文本向量;根据文本向量计算文字信息中所有词汇的概率;将概率中的最大值对应的词汇确定为意图词汇,实现了不需更换数据转换规则的情况下智能识别用户的意图,提高了识别效率。
-
公开(公告)号:CN112434133A
公开(公告)日:2021-03-02
申请号:CN202011389237.5
申请日:2020-12-02
Applicant: 康佳集团股份有限公司 , 苏州大学 , 哈尔滨工业大学(深圳) , 深圳哈工大科技创新产业发展有限公司
IPC: G06F16/33 , G06F16/332 , G06F16/35 , G06F40/295 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种意图分类方法、装置、智能终端及存储介质,其中,上述意图分类方法包括:获取目标文本;基于上述目标文本进行命名实体识别,获取命名实体识别结果;基于上述命名实体识别结果,对上述目标文本进行规范化处理,获取规范化处理后的文本句式,作为规范化处理结果;基于上述目标文本和上述规范化处理结果进行意图分类;输出上述意图分类的结果。本发明方案不必基于模板进行意图分析,且可以结合文本的句式特征强化意图分类的性能;使得意图分类时不依赖于模板,不受数据规模以及数据质量的影响,同时可缓解进行分类时遗忘文本特征的问题,有利于提高意图分类的准确性。
-
公开(公告)号:CN106951412A
公开(公告)日:2017-07-14
申请号:CN201710182656.3
申请日:2017-03-24
Applicant: 苏州大学
IPC: G06F17/27
Abstract: 本发明公开了一种中文情感表达组合抽取方法,包括:提取目标中文语句库中每个语句包含的对象、观点词和关系词;构建该语句对应的一个或多个组合项,每个组合项包含一个情感表达组合及该情感表达组合与一个关系词的映射关系,每个情感表达组合为一个对象和一个观点词构成的二元对;对所有语句对应的组合项进行汇总,确定组合项候选集;根据情感表达组合与关系词的映射关系,对组合项候选集中的情感表达组合进行排序;根据排序结果,确定待抽取的情感表达组合。应用本发明实施例所提供的技术方案,抽取到具体的情感表达组合,可以作为情感分析的情感资源,提高情感分析的可靠性。本发明还公开了一种中文情感表达组合抽取装置,具有相应技术效果。
-
-
-
-
-
-
-