基于多注意力U-Net全卷积网络的视网膜图像视盘提取方法

    公开(公告)号:CN114387437A

    公开(公告)日:2022-04-22

    申请号:CN202210029904.1

    申请日:2022-01-12

    Abstract: 本发明涉及一种基于多注意力U‑Net全卷积网络的视网膜图像视盘提取方法,包括以下步骤:步骤S1:获取原始彩色视网膜图像,并采用最亮点提取及区域模糊最亮区域的方法进行感兴趣区域提取;步骤S2:根据提取的感兴趣区域图像,采用RGB通道分离,并对分离后的红色通道图像进行直方图均衡化和标准化处理;步骤S3:将红色通道图像,直方图均衡化图图像和标准化图像进行通道融合产生新的三通道图像;步骤S4:基于多注意力U‑Net全卷积网络,构建并训练视网膜图像视盘分割模型;步骤S5将将通道融合后的图像数据输入视网膜视盘分割模型进行视网膜图像视盘提取分割。本发明实现了视网膜图像视盘的高精度提取分割。

    基于Transformer和卷积神经网络的三维医学图像分割方法

    公开(公告)号:CN115457009A

    公开(公告)日:2022-12-09

    申请号:CN202211171081.2

    申请日:2022-09-24

    Abstract: 本发明提出一种基于Transformer和卷积神经网络的三维医学图像分割方法,包括以下步骤:步骤S1:对原始医学图像的标签图的边缘进行逐类提取;步骤S2:对原始医学图像的原图、标签图和标签图的边缘图像进行随机翻转、旋转和缩放处理;步骤S3:将处理后的图像输入医学图像分割模型进行各类组织器官的分割;所述医学图像分割模型是由训练集数据经过标签图的边缘提取后再对原图、标签图和标签图边缘图像随机翻转、旋转和缩放处理后产生的图像数据在基于Transformer和卷积神经网络的结合形态结构学习的网络模型进行训练获得。应用该技术方案可实现增强最终分割结果的准确性。

Patent Agency Ranking