无侧壁损伤的nano-LED阵列及其制作方法

    公开(公告)号:CN114141805B

    公开(公告)日:2024-08-30

    申请号:CN202111401746.X

    申请日:2021-11-24

    Applicant: 福州大学

    Abstract: 本发明提出一种无侧壁损伤的nano‑LED阵列及其制作方法,通过图形化技术和电子束蒸发,在p型GaN层上制作纳米级的金属阵列,来激活其下方的p型GaN层,从而提高这些区域的载流子浓度,进而使nano‑LED正常发光。而没有金属覆盖的区域未被激活,载流子浓度很低,呈现高阻态,刚好可隔离nano‑LED器件,使每个nano‑LED可独立工作。本发明避免了通过刻蚀来隔离nano‑LED芯片所带来的侧壁损伤,增加了nano‑LED芯片的可利用面积,提高了nano‑LED的发光效率。这种通过选择性金属激活p型GaN来制作LED芯片的方法可拓展至nano尺寸,为实现超高分辨率的nano‑LED显示屏提供了一种有利途径。

    纳米尺寸LED芯片阵列及其制备方法

    公开(公告)号:CN114141916B

    公开(公告)日:2023-08-01

    申请号:CN202111401694.6

    申请日:2021-11-24

    Applicant: 福州大学

    Abstract: 本发明提出一种纳米尺寸LED芯片阵列及其制备方法,在衬底上依次外延生长N型氮化镓层、量子阱有源层以及P型氮化镓层;在P型氮化镓层上图案化制作金属对该区域P型氮化镓中的掺杂物与氢形成的络合物起一定的作用,使氢从中解吸,以激活该区域;利用离子注入在除金属激活区域以外的区域形成高阻值区域;在高阻值区域上覆盖二氧化硅;分别在金属激活的P型氮化镓区域和N型氮化镓形成P型电极和N型电极。本发明技术方案采用离子注入形成电气隔离可以有效避免传统ICP刻蚀中的侧壁损伤问题和后续金属爬坡易断裂问题,并利用金属激活进一步提高激活区域的光电性能。

    纳米尺寸LED芯片阵列及其制备方法

    公开(公告)号:CN114141916A

    公开(公告)日:2022-03-04

    申请号:CN202111401694.6

    申请日:2021-11-24

    Applicant: 福州大学

    Abstract: 本发明提出一种纳米尺寸LED芯片阵列及其制备方法,在衬底上依次外延生长N型氮化镓层、量子阱有源层以及P型氮化镓层;在P型氮化镓层上图案化制作金属对该区域P型氮化镓中的掺杂物与氢形成的络合物起一定的作用,使氢从中解吸,以激活该区域;利用离子注入在除金属激活区域以外的区域形成高阻值区域;在高阻值区域上覆盖二氧化硅;分别在金属激活的P型氮化镓区域和N型氮化镓形成P型电极和N型电极。本发明技术方案采用离子注入形成电气隔离可以有效避免传统ICP刻蚀中的侧壁损伤问题和后续金属爬坡易断裂问题,并利用金属激活进一步提高激活区域的光电性能。

    无侧壁损伤的nano-LED阵列及其制作方法

    公开(公告)号:CN114141805A

    公开(公告)日:2022-03-04

    申请号:CN202111401746.X

    申请日:2021-11-24

    Applicant: 福州大学

    Abstract: 本发明提出一种无侧壁损伤的nano‑LED阵列及其制作方法,通过图形化技术和电子束蒸发,在p型GaN层上制作纳米级的金属阵列,来激活其下方的p型GaN层,从而提高这些区域的载流子浓度,进而使nano‑LED正常发光。而没有金属覆盖的区域未被激活,载流子浓度很低,呈现高阻态,刚好可隔离nano‑LED器件,使每个nano‑LED可独立工作。本发明避免了通过刻蚀来隔离nano‑LED芯片所带来的侧壁损伤,增加了nano‑LED芯片的可利用面积,提高了nano‑LED的发光效率。这种通过选择性金属激活p型GaN来制作LED芯片的方法可拓展至nano尺寸,为实现超高分辨率的nano‑LED显示屏提供了一种有利途径。

Patent Agency Ranking