一种用于深度学习微动脉瘤检测的高斯建模标签分配方法

    公开(公告)号:CN118212197A

    公开(公告)日:2024-06-18

    申请号:CN202410310661.8

    申请日:2024-03-19

    Applicant: 福州大学

    Abstract: 本发明提出一种用于深度学习微动脉瘤检测的高斯建模标签分配方法,所述方法首先利用特征感受野具有遵循高斯分布的特点,通过对理论感受野大小的转换,获取检测目标的有效感受野,来自动生成合适的样本锚框;然后,针对于微动脉瘤目标微小的特点,使用了相似度分数计算方式,即归一化Wasserstein距离,来直接衡量样本锚框和标签样本之间的相似性,并通过分层标签分配算法对样本锚框进行标签分配;本发明能够避免微动脉瘤的微小特征对样本标签分配结果的干扰,更准确地为样本锚框分配标签,提升眼底图像中微动脉瘤的正样本质量,有效实现微小目标的平衡学习,提高微动脉瘤的检测精度。

    基于涂鸦模拟的交互式红外睑板腺图像分割方法

    公开(公告)号:CN119379655A

    公开(公告)日:2025-01-28

    申请号:CN202411527213.X

    申请日:2024-10-30

    Applicant: 福州大学

    Abstract: 本发明提出一种基于涂鸦模拟的交互式红外睑板腺图像分割方法;该方法设计了一种新型的多任务网络架构,接收多种交互信息(点击和涂鸦)作为输入,实现腺体分割,并预测其假阳性和假阴性区域用于指导模型进行涂鸦模拟。该方法采用二阶段网络训练策略,结合不确定性区域简化掩码以提高错误区域预测的准确性。对于每轮用户交互,该方法分两个阶段执行预测。第一阶段,网络基于用户点击输出粗略分割掩码及对应的假阳性和假阴性预测区域;第二阶段,模型基于这两个错误区域根据伪涂鸦生成策略模拟涂鸦以细化第一阶段输出的粗略分割掩码。对比现有方法,本方法能同时兼顾涂鸦的高效性和用户交互的简便性,进一步降低用户劳动成本。

Patent Agency Ranking