基于线性判别分析和支持向量机的光伏阵列故障诊断方法

    公开(公告)号:CN108875796A

    公开(公告)日:2018-11-23

    申请号:CN201810525961.2

    申请日:2018-05-28

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于线性判别分析的光伏阵列工作状态分析与故障诊断方法。该方法包括:步骤S1:生成光伏阵列仿真数据并采集日常工作中光伏发电阵列最大功率点的若干个电气特征参数以及环境参数,得到特征参数测试样本矩阵;步骤S2:对特征参数标准矩阵做线性判别分析,得到投影矩阵,并将标准矩阵乘上投影矩阵得到标准分类矩阵;步骤S3:将标准分类矩阵作为训练集,通过支持向量机训练分类模型;步骤S4:将测试样本矩阵乘上投影矩阵,得到新的样本矩阵;步骤S5:通过S3中得到的分类模型对步骤S4中得到的新的样本矩阵进行分类,识别数据所属的分类。本发明可以通过对光伏系统日常运行数据的线性判别分析和分类实现对故障的准确诊断。

    一种基于密度聚类算法实现光伏阵列工作状态分析与故障诊断的方法

    公开(公告)号:CN106777984A

    公开(公告)日:2017-05-31

    申请号:CN201611173830.X

    申请日:2016-12-19

    Applicant: 福州大学

    CPC classification number: G06F19/00 G06K9/6218 G06Q50/06

    Abstract: 本发明涉及一种基于密度聚类算法实现光伏阵列工作状态分析与故障诊断的方法,首先采集日常工作中光伏发电阵列最大功率点的若干个电气参数,得到每一日的电气参数样本组合;接着将每个电气参数样本进行归一化得到测试样本组合;然后根据归一化后的测试样本组合进行计算得到距离矩阵;接着采用基于密度的聚类算法对这些测试样本进行自动的聚类,获得若干个聚类;接着基于预先通过仿真模型获得的参考数据,分别计算每组参考数据和每个聚类之间的最小距离,形成一个距离向量;最后通过将距离向量中每个元素与聚类算法中的截断距离进行对比,识别每个聚类所属的工作类别。本发明可直接通过对光伏系统日常运行数据的聚类操作实现故障的准确诊断。

    一种基于密度聚类算法实现光伏阵列工作状态分析与故障诊断的方法

    公开(公告)号:CN106777984B

    公开(公告)日:2019-02-22

    申请号:CN201611173830.X

    申请日:2016-12-19

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于密度聚类算法实现光伏阵列工作状态分析与故障诊断的方法,首先采集日常工作中光伏发电阵列最大功率点的若干个电气参数,得到每一日的电气参数样本组合;接着将每个电气参数样本进行归一化得到测试样本组合;然后根据归一化后的测试样本组合进行计算得到距离矩阵;接着采用基于密度的聚类算法对这些测试样本进行自动的聚类,获得若干个聚类;接着基于预先通过仿真模型获得的参考数据,分别计算每组参考数据和每个聚类之间的最小距离,形成一个距离向量;最后通过将距离向量中每个元素与聚类算法中的截断距离进行对比,识别每个聚类所属的工作类别。本发明可直接通过对光伏系统日常运行数据的聚类操作实现故障的准确诊断。

    一种基于主成分分析实现光伏阵列工作状态分析与故障诊断方法

    公开(公告)号:CN109117865A

    公开(公告)日:2019-01-01

    申请号:CN201810771909.5

    申请日:2018-07-13

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于主成分分析实现光伏阵列工作状态分析与故障诊断方法,生成光伏阵列仿真数据并采集日常工作中光伏发电阵列最大功率点的电气特征参数以及环境参数,得到特征参数测试样本矩阵;接着对特征参数标准矩阵做主成分分析,得到投影矩阵,并将标准矩阵乘上投影矩阵得到标准主成分矩阵;然后对标准主成分矩阵做归一化处理,并将其作为训练集,通过支持向量机训练分类模型;接着将特征参数测试样本矩阵乘上投影矩阵,得到样本主成分矩阵,并对其做归一化处理;最后通过分类模型对归一化后的样本主成分矩阵进行分类,识别数据所属的分类。本发明可以通过对光伏系统日常运行数据的主成分分析和分类实现对故障的准确诊断。

Patent Agency Ranking