一种适用于嵌入式平台的二值化卷积神经网络的构建方法

    公开(公告)号:CN109784488B

    公开(公告)日:2022-08-12

    申请号:CN201910034182.7

    申请日:2019-01-15

    Applicant: 福州大学

    Abstract: 本发明涉及一种适用于嵌入式平台的二值化卷积神经网络的构建方法,包括以下步骤:步骤S1:采集ImageNet数据集,并将得到ImageNet数据集分为训练集、验证集和测试集;步骤S2:根据得到的训练集和验证集,对XNOR‑Net二值化神经网络模型进行训练,并验证,得到训练后的二值化神经网络模型;步骤S3:将训练好的二值化网络模型中的缩放操作和批归一化操作进行整合,并移植到嵌入式系统中;步骤S4:将测试集输入嵌入式系统中,对模型进行性能测试。本发明所提出的方法能够在提高网络运算速度的同时保持网络分类的准确率,可促进二值化卷积神经网络能够在嵌入式系统及FPGA上的部署。

    一种适用于嵌入式平台的二值化卷积神经网络的构建方法

    公开(公告)号:CN109784488A

    公开(公告)日:2019-05-21

    申请号:CN201910034182.7

    申请日:2019-01-15

    Applicant: 福州大学

    Abstract: 本发明涉及一种适用于嵌入式平台的二值化卷积神经网络的构建方法,包括以下步骤:步骤S1:采集ImageNet数据集,并将得到ImageNet数据集分为训练集、验证集和测试集;步骤S2:根据得到的训练集和验证集,对XNOR-Net二值化神经网络模型进行训练,并验证,得到训练后的二值化神经网络模型;步骤S3:将训练好的二值化网络模型中的缩放操作和批归一化操作进行整合,并移植到嵌入式系统中;步骤S4:将测试集输入嵌入式系统中,对模型进行性能测试。本发明所提出的方法能够在提高网络运算速度的同时保持网络分类的准确率,可促进二值化卷积神经网络能够在嵌入式系统及FPGA上的部署。

Patent Agency Ranking