-
公开(公告)号:CN114445689A
公开(公告)日:2022-05-06
申请号:CN202210112397.8
申请日:2022-01-29
Applicant: 福州大学 , 福建医科大学附属协和医院
Abstract: 本发明涉及一种目标先验信息指导的多尺度加权融合目标检测方法及系统,该方法包括以下步骤:首先使用卷积神经网络进行特征提取,然后对目标尺寸、颜色及形状角度先验信息进行基于尺度大小的聚类,使用聚类结果得到的权重来指导多尺度特征的加权融合,使得多尺度检测在目标具有多种形态、大小的场景下能够更有针对性地学习目标尺度的分布;其次在多尺度动态加权融合之后,引入尺度特征贡献度微调来进一步学习多尺度特征图的贡献度,并使用先验信息权重引导初始化;最后将多尺度输出传入分类与回归两个子网络进行目标物体的定位与分类。该方法及系统可以有效地利用目标的先验信息解决目标尺度不均衡问题,提高目标检测的准确性。
-
公开(公告)号:CN114445482A
公开(公告)日:2022-05-06
申请号:CN202210112398.2
申请日:2022-01-29
Applicant: 福州大学 , 福建医科大学附属协和医院
Abstract: 本发明涉及一种基于Libra‑RCNN和椭圆形状特征的图像中目标检测方法及系统,该方法包括以下步骤:S1、输入训练集中图像并进行预处理;S2、基于Libra‑RCNN架构设置骨干网络模型信息;S3、通过矩形框标签构建椭圆框标签,并计算椭圆交并比IoU;S4、计算椭圆锚框的长短轴及角度;S5、设置分类损失函数、回归损失函数和角度损失函数;S6、设置不同尺度输出后的Head部分;S7、设置Libra‑RCNN的采样策略为IoU最大值采样策略,并设置相应的IoU阈值;S8、生成网络模型,并通过训练集图像训练网络模型,得到训练好的网络模型;S9、通过训练好的网络模型检测图像,得到目标的相应位置和目标类别。该方法及系统有利于提高对于具有椭圆形状特征目标的检测精度。
-
公开(公告)号:CN107670672B
公开(公告)日:2019-10-15
申请号:CN201710849296.8
申请日:2017-09-20
Applicant: 福州大学
Abstract: 本发明涉及一种BaTiO3‑CdS纳米复合光催化剂及其制备方法,属于材料制备及光催化的技术领域。该方法以钛酸四丁酯,氢氧化钾,氢氧化钡,乙酸镉,硫脲为原料,先通过溶胶凝胶法合成钛酸钡,再用共沉淀法分步合成BaTiO3‑CdS纳米复合结构。本发明制备的复合材料催化剂可以有效提高光生载流子的分离和降低载流子复合率,具有优良的光催化活性,可用于催化光解水制氢,表现出比单一材料更优异的光催化性能。其光催化活性是纯的CdS的88.5倍,在光催化领域具有广阔的应用前景。
-
公开(公告)号:CN107649150B
公开(公告)日:2019-10-15
申请号:CN201710893265.2
申请日:2017-09-28
Applicant: 福州大学
Abstract: 本发明公开了一种富含硫空位的Cd/CdS异质结可见光催化剂的制备方法及其应用。以溶剂热法制备的CdS为前驱体,通过热处理法合成中间体CdO/CdS复合材料,并利用硼氢化钠原位化学还原方法直接获得。本发明制备出的Cd/CdS复合可见光催化剂,由于含有大量的硫空位,大大提高了催化剂对可见光的吸收利用,且高导电性的Cd与CdS之间具有更加紧密的接触,从而光生电子‑空穴能更好分离,光催化效率更高。该异质结光催化剂具有较高的稳定性,在可见光照射下,表现出优良的光催化活性,可用于催化光解水制氢。本发明制备条件要求低,操作简单,原材料廉价易得。对环境友好,可见光催化效率高。在光催化领域具有广阔的应用前景。
-
公开(公告)号:CN107537519B
公开(公告)日:2019-08-09
申请号:CN201710913821.8
申请日:2017-09-30
Applicant: 福州大学
CPC classification number: Y02E60/364
Abstract: 本发明公开了一种硫化镉二维纳米棒阵列催化剂及其制备方法和应用。以Cd(NO3)2·4H2O、CH4N2S以及还原谷胱甘肽的混合液为前驱体溶液,将导电玻璃加入到前驱体溶液中发生水热反应,制得所述硫化镉二维纳米棒阵列催化剂,其晶体结构属于非中心对称的六方纤锌矿型,由排列整齐的硫化镉纳米棒构成。本发明制得的催化剂能在声波作用下辅助光催化光解水裂解反应制取氢气和氧气,其中在27kHz的超声波场中产氢效率可达3.6ml/h/g/W.cm‑2,打破了硫化镉作为传统光催化剂的局限性,实现了光能与声能的同时利用和相互加强,为光催化剂分解纯水制取氢气和氧气提供了一种新的途径。
-
公开(公告)号:CN108031481A
公开(公告)日:2018-05-15
申请号:CN201711380362.8
申请日:2017-12-20
Applicant: 福州大学
Abstract: 本发明公开了一种银插层剥离法制备的超薄Bi12O17Cl2纳米片光催化剂及其应用,属于光催化领域。利用Ag+和Cl‑之间的强作用力,在乙醇水溶液中通过自组装将Ag+插入块体Bi12O17Cl2的[Bi12O17]2+和[Cl2]2‑层间,并且采用光还原的方法将Ag+转化为Ag单质,随着Ag单质在层间成核长大,将块体的Bi12O17Cl2纳米片逐渐剥离为超薄纳米片。该制备方法具有操作简便、原料成本低、耗能少、可实现规模化制备等优点,属于绿色合成技术。
-
公开(公告)号:CN107649150A
公开(公告)日:2018-02-02
申请号:CN201710893265.2
申请日:2017-09-28
Applicant: 福州大学
Abstract: 本发明公开了一种富含硫空位的Cd/CdS异质结可见光催化剂的制备方法及其应用。以溶剂热法制备的CdS为前驱体,通过热处理法合成中间体CdO/CdS复合材料,并利用硼氢化钠原位化学还原方法直接获得。本发明制备出的Cd/CdS复合可见光催化剂,由于含有大量的硫空位,大大提高了催化剂对可见光的吸收利用,且高导电性的Cd与CdS之间具有更加紧密的接触,从而光生电子-空穴能更好分离,光催化效率更高。该异质结光催化剂具有较高的稳定性,在可见光照射下,表现出优良的光催化活性,可用于催化光解水制氢。本发明制备条件要求低,操作简单,原材料廉价易得。对环境友好,可见光催化效率高。在光催化领域具有广阔的应用前景。
-
公开(公告)号:CN106268884A
公开(公告)日:2017-01-04
申请号:CN201610672371.3
申请日:2016-08-16
Applicant: 福州大学
IPC: B01J27/138 , C01B3/32
CPC classification number: B01J27/138 , B01J35/004 , C01B3/326
Abstract: 本发明公开了一种稀土掺杂的NaYF4/Au@CdS复合光催化剂及其制备方法。其以稀土掺杂的NaYF4为核,以CdS纳米晶为壳,Au纳米粒子镶嵌在核壳界面处;其中CdS与稀土掺杂的NaYF4的摩尔量之比为1:50~50:1;Au的质量分数为0.1~10%。所得NaYF4/Au@CdS复合光催化剂利用上转换材料吸收近红外光转换发出可见光,通过引发Au纳米结构的等离子共振,进而诱发近域电磁场高效激发CdS,实现其对近红外光的响应。因此,在光催化乙醇重整制氢反应中,该复合光催化剂优化了对近红外光的利用效率,提高了光催化反应中太阳光的利用效率。
-
公开(公告)号:CN115170913A
公开(公告)日:2022-10-11
申请号:CN202210674635.4
申请日:2022-06-15
Applicant: 福州大学 , 福建医科大学附属协和医院
IPC: G06V10/80 , G06V10/40 , G06V10/25 , G06V10/764 , G06V10/766 , G06V10/762 , G06V10/74 , G06K9/62
Abstract: 本发明涉及一种基于集群框融合的目标检测方法。该方法,首先建立数据集,然后使用特征提取网络对输入的数据集进行特征提取,得到特征图;然后将特征图输入到后续的分类、边界回归网络中,得到网络输出的预测框;在后处理阶段,利用这些预测框聚集的特征,先进行簇划分并过滤部分簇;然后在簇内预测聚类中心个数,并设置初始聚类中心、距离函数,然后在簇内进行聚类,聚类后的聚类中心可以很好地描述这一片区域预测框聚集的情况;最后,将相似度较高的聚类中心进行融合,并删除一些聚类中心,得到最终的预测框。本发明充分利用到了模型输出的每一个预测框,并根据这些预测框的聚集程度得到最终修正后的预测框,可以有效提高模型的召回率和精确率。
-
公开(公告)号:CN108745382A
公开(公告)日:2018-11-06
申请号:CN201810676613.5
申请日:2018-06-27
Applicant: 福州大学
IPC: B01J27/043 , C01B3/04
CPC classification number: B01J27/043 , B01J35/004 , C01B3/042
Abstract: 本发明公开了一种NiCd双非贵金属修饰的CdS可见光催化剂的制备方法及其应用。以溶剂热法制备的CdS为前驱体,通过热处理法合成中间体CdO/CdS复合材料,再利用硼氢化钠原位化学还原方法得到Cd/CdS,然后采用光沉积的方法最终得到NiCd共修饰的CdS可见光催化剂。本发明制备出的NiCd/CdS复合可见光催化剂与空白CdS或单金属修饰CdS相比,大大提高了催化剂对可见光的吸收利用,且NiCd双金属与CdS之间具有非常紧密的接触,从而光生电子‑空穴能更好地分离,光催化效率更高、稳定性高,可用于光催化分解水制氢;并且制备条件要求低,操作简单,原材料廉价易得,对环境友好,具有广阔的应用前景。
-
-
-
-
-
-
-
-
-