重构心源性猝死风险因子的系统及方法

    公开(公告)号:CN113974647B

    公开(公告)日:2023-08-04

    申请号:CN202111251594.X

    申请日:2021-10-26

    Applicant: 福州大学

    Abstract: 本发明提出一种非线性支持向量机多特征量化及模型参数寻优重构心源性猝死风险因子的系统及方法,包括对心源性猝死心电信号数据集和正常窦性心律心电信号数据集进行数据预处理;对处理好的心电数据集进行心电波形检测;对心源性猝死风险因子进行提取;对提取的初始特征进行特征量化缩放处理;利用非线性支持向量机作为心源性猝死风险因子的验证模型,通过模型参数寻优,确定误差惩罚参数C和核参数γ;通过制定的心源性猝死风险因子和优化后的模型参数得到心源性猝死的预测模型;达到重构、验证心源性猝死风险因子的效果,对研究心源性猝死具有很好的指导意义。

    非线性支持向量机多特征量化及模型参数寻优重构心源性猝死风险因子的系统及方法

    公开(公告)号:CN113974647A

    公开(公告)日:2022-01-28

    申请号:CN202111251594.X

    申请日:2021-10-26

    Applicant: 福州大学

    Abstract: 本发明提出一种非线性支持向量机多特征量化及模型参数寻优重构心源性猝死风险因子的系统及方法,包括对心源性猝死心电信号数据集和正常窦性心律心电信号数据集进行数据预处理;对处理好的心电数据集进行心电波形检测;对心源性猝死风险因子进行提取;对提取的初始特征进行特征量化缩放处理;利用非线性支持向量机作为心源性猝死风险因子的验证模型,通过模型参数寻优,确定误差惩罚参数C和核参数γ;通过制定的心源性猝死风险因子和优化后的模型参数得到心源性猝死的预测模型;达到重构、验证心源性猝死风险因子的效果,对研究心源性猝死具有很好的指导意义。

Patent Agency Ranking