-
公开(公告)号:CN114822852A
公开(公告)日:2022-07-29
申请号:CN202210552510.4
申请日:2022-05-20
Applicant: 神州医疗科技股份有限公司
Abstract: 本申请提出一种基于知识图谱的肝癌术后复发风险的预测方法及装置,属于医疗数据预测领域,其中方法包括:针对患者数据进行预处理,得到预处理后数据;针对所述预处理后数据,构建包含肝癌复发相关影响因素、肝癌指标和患者数据的知识图谱;采用XLNet训练模型对所述知识图谱中实体、关系进行训练,得到患者实体和关系的表征向量;根据所述患者实体和关系的表征向量,采用XGB算法进行预测,并用MSE作为损失函数,将损失函数最小的对应预测值,作为肝癌术后复发风险的预测值。系统包括:数据预处理模块、知识图谱构建模块、知识表征训练模块以及手术后复发风险预测模块。本申请提高了风险预测的可靠程度。
-
公开(公告)号:CN114822852B
公开(公告)日:2024-11-08
申请号:CN202210552510.4
申请日:2022-05-20
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/30 , G16H50/70 , G16H10/60 , G06F16/35 , G06F16/36 , G06F18/214 , G06F18/241 , G06N5/022
Abstract: 本申请提出一种基于知识图谱的肝癌术后复发风险的预测方法及装置,属于医疗数据预测领域,其中方法包括:针对患者数据进行预处理,得到预处理后数据;针对所述预处理后数据,构建包含肝癌复发相关影响因素、肝癌指标和患者数据的知识图谱;采用XLNet训练模型对所述知识图谱中实体、关系进行训练,得到患者实体和关系的表征向量;根据所述患者实体和关系的表征向量,采用XGB算法进行预测,并用MSE作为损失函数,将损失函数最小的对应预测值,作为肝癌术后复发风险的预测值。系统包括:数据预处理模块、知识图谱构建模块、知识表征训练模块以及手术后复发风险预测模块。本申请提高了风险预测的可靠程度。
-
公开(公告)号:CN114927234B
公开(公告)日:2024-11-22
申请号:CN202210555930.8
申请日:2022-05-20
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/70 , G16H10/60 , G06F18/23213 , G06F18/22 , G06N3/0464 , G06F16/9535 , G06V10/82 , G06V10/762 , G06V10/74
Abstract: 本申请提供了一种相似病历推荐方法、装置、电子设备及存储介质,方法包括:获取第一电子病历以及第二电子病历;将第一电子病历中第一文本数据以及每一第二电子病历中第二文本数据映射到向量空间,得到第一电子病历对应的第一主诉向量以及每一第二电子病历各自对应的第二主诉向量;基于K均值聚类K‑means算法,对第一主诉向量和每一第二主诉向量按照第一预设个数的类别进行聚类,得到第一电子病历对应的第一主诉向量的类别和每一第二电子病历各自对应的第二主诉向量的类别。本申请能够为用户推荐与指定病历的相似度较高的病历,从而为用户提供参考。
-
公开(公告)号:CN114927234A
公开(公告)日:2022-08-19
申请号:CN202210555930.8
申请日:2022-05-20
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/70 , G16H10/60 , G06N3/04 , G06K9/62 , G06F16/9535
Abstract: 本申请提供了一种相似病历推荐方法、装置、电子设备及存储介质,方法包括:获取第一电子病历以及第二电子病历;将第一电子病历中第一文本数据以及每一第二电子病历中第二文本数据映射到向量空间,得到第一电子病历对应的第一主诉向量以及每一第二电子病历各自对应的第二主诉向量;基于K均值聚类K‑means算法,对第一主诉向量和每一第二主诉向量按照第一预设个数的类别进行聚类,得到第一电子病历对应的第一主诉向量的类别和每一第二电子病历各自对应的第二主诉向量的类别。本申请能够为用户推荐与指定病历的相似度较高的病历,从而为用户提供参考。
-
-
-